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A quantum dot coupled to two helical edge states of a two-dimensional topological insulator through
electron tunnelings is studied. We show that if the electron interactions on the edge states are repulsive, with
Luttinger liquid parameter K�1, the system reaches a stable two-channel Kondo fixed point at low tempera-
tures. This is in contrast to the Luttinger liquid leads case in which K�1 /2 is needed. This two-channel fixed
point is described by a boundary sine-Gordon Hamiltonian with a K dependent boundary term. The impurity
entropy, the impurity specific heat and the conductance are calculated.
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The two-channel Kondo model has been under intense
theoretical study1 after the seminal work of Noziere and
Blandin,2 in which they pointed out that a non-Fermi liquid
fixed point exists for the two-channel Kondo model with
noninteracting electrons. Recently, the authors of Ref. 3
demonstrated experimentally that a quantum dot coupled to
an infinite reservoir with noninteracting electrons and a finite
reservoir with interacting electrons may display two-channel
Kondo effect. The key idea is that Coulomb blockade sup-
presses the exchange of electrons between the finite reservoir
and the infinite reservoir.4 Consequently, the two reservoirs
couple to the quantum dot independently.

Indeed, using electron-electron repulsion to suppress in-
terreservoir tunnelings was suggested earlier by Fabrizio and
Gogolin, in the context of a quantum dot coupled to two
Luttinger liquid leads.5–7 They show that the two-channel
Kondo fixed point can be reached when the repulsive inter-
actions of the electrons in the leads are strong enough, i.e.,
with Luttinger liquid parameter K�1 /2.

Recently, a class of materials called topological insulators
were first theoretically proposed and then experimentally
fabricated.8–12 Two-dimensional topological insulators have
gapless helical edge states despite the presence of a bulk
gap.8 The edge states are called helical because the directions
of the spins and the momentum of the electrons are tied
together.13 The one-channel Kondo effect of helical edge
states was first studied in Ref. 14 as a truncated model of
Kondo effect in Luttinger liquids. A more detailed recent
study is carried out in Ref. 15.

In this work, we study a quantum dot coupled to two
helical edge states as depicted in Fig. 1�a�. If the electrons on
the edge states are noninteracting, it is well known that the
system can be described by a one-channel Kondo
Hamiltonian.16,17 However, we show that a weak repulsive
interaction, with K�1 is enough to drive the system to the
two-channel Kondo fixed point. This is in sharp contrast to
the case of Luttinger liquid leads in which K�1 /2 is
needed.5 This two-channel fixed point is described by a
boundary sine-Gordon Hamiltonian with a K dependent
boundary term. We study the ground state, thermaldynamic
and transport properties near this two-channel fixed point.
More specifically, we show that the impurity entropy at zero
temperature is ln�2K, the impurity specific-heat

Cimp�T2/K−2 when 2 /3�K�1, and Cimp�T when K�2 /3,
and the linear conductance across the two helical edges
through the quantum dot has nontrivial temperature depen-
dence as a result of the renormalization group flow.

The schematic diagram of our model is depicted in
Fig. 1�a�. Two helical edge states of an two-dimensional �2D�
topological insulator are brought close to each other at a
tunneling junction. A quantum dot is placed at the middle of
the junction and coupled to the two edge states through elec-
tron tunnelings. The system is described by an Anderson
Hamiltonian HA=H0+Hi+Hd+Ht where

H0 = �
i=1,2

− ivF� ��iR↑
† �x��x�iR↑�x� − �iL↓

† �x��x�iL↓�x��dx ,

Hi = �
i=1,2

�
�=R,L

g4

2
� �i��

† �x��i���x��i��
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+ g2� �iR↑
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†d↑d↓
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FIG. 1. �a� A quantum dot coupled to two helical edges of a 2D
topological insulator through electron tunneling. S and D denote the
source and drain, respectively. �b�The schematic picture of the lin-
ear conductance G from S1 to D2 versus temperature T. The solid
line and the dashed line depict the 1 /2�K�1 and K�1 /2 cases,
respectively.

PHYSICAL REVIEW B 81, 041305�R� �2010�

RAPID COMMUNICATIONS

1098-0121/2010/81�4�/041305�4� ©2010 The American Physical Society041305-1

http://dx.doi.org/10.1103/PhysRevB.81.041305


Ht = �
i=1,2

t�d↑
†�iR↑ + d↓

†�iL↓� + h.c.

H0 and Hi denote the kinetic energy and the interaction of
the helical edge states, respectively. From H0, we see that the
right/left moving electrons are spin up/down. Hd is the
Hamiltonian of the quantum dot where � is the single particle
energy level at the dot and U is the on-site interaction energy.
Ht describes the coupling between the dot and the edges and
we have tuned to the channel symmetric point such that t is
independent of the edge index. In the presence of spin-orbit
coupling, spin �↑ and ↓� denotes pseudospin of the edge
modes. In the large U limit, one obtains the Kondo Hamil-
tonian H=H0+HK through perturbation theory,18 where

HK = �
i=1,2

J1S� · ��i�
† ·

���

2
· �i�	 + �

i�j

J2S� · ��i�
† ·

���

2
· � j�	 .

�1�

Initially, J1=J2�0 and without interaction, Eq. �1� reduces
to a single channel Kondo problem.16,17 Our goal is to show
that J2 normalizes to zero at low temperatures when g2�0.
Because of helicity, one of the R/L and the spin ↑↓ indexes
are redundant, we keep only one of them starting from Eq.
�1�.

It is important to note that, in general, there are extra
backscattering terms of the form �iR

† �0��iL�0�+h.c. caused
by the quantum dot in the Hamiltonian H. The backscattering
terms cut each edge into two separate parts at low tempera-
tures if K�1 and render the geometry in Fig. 1�a� unstable.
However, in our case, single particle back-scattering terms
are forbidden because of time-reversal symmetry. Two-
particle back scatterings preserve time-reversal symmetry but
they are irrelevant so long as K�1 /4.13 Thus, our discussion
below is valid for K�1 /4.

By Abelian bosonization,19,20 the electron operators can
be written as: �iR/L= 1

�2	a
e
i��4	�iR/L�x�+kFx�. We define bosonic

fields �i�x�=�iL�x�+�iR�x� and �i�x�=�iL�x�−�iR�x�. The
dual fields satisfy the commutation relations ��i�x� ,� j�x���
= −i

2 
ij sgn�x−x��, where sgn�x�=0 when x=0. The symmet-
ric and antisymmetric combinations of �i and �i are denoted
as: �s/a= 1

�2
��1
�2� and �s/a= 1

�2
��1
�2�. In terms of �s/a

and �s/a, the above Hamiltonians can be written as: H0+Hi

=
vF�
2 
 1

K ��x�s�2+K��x�s�2+ 1
K ��x�a�2+K��x�a�2dx and

HK = −� 2

	
J1

zSz�x�s�0�

+
J1

xy

	a
�S−e−i�2	�s�0� + S+ei�2	�s�0��cos��2	�a�0��

+
2J2

z

a	
Sz sin��2	�a�0��sin��2	�a�0��

+
J2

xy

	a
�S−e−i�2	�s�0� + S+ei�2	�s�0��cos��2	�a�0�� .

Here, the Luttinger liquid parameter is defined as

K =�1 + g4/2	vF − g2/2	vF

1 + g4/2	vF + g2/2	vF

and vF� =vF
��1+g4 /2	vF�2− �g2 /2	vF�2.20 The bosonic form

of HK is spin anisotropic, we denote the two components of
Ji as Ji

z/xy, respectively. This is reasonable for our problem,
because spin-orbit coupling breaks SU�2� symmetry of the
electrons on the edges. The spin-coupling terms acquire dif-
ferent scaling dimensions when K�1 as we see below.

With the bosonic Hamiltonian H=H0+Hi+HK, we may
calculate the scaling dimensions of the operators in HK. At
the vicinity of the fixed point where Ji

z=Ji
xy =0, the scaling

dimensions of the J1
z , J1

xy terms are 1, and K, respectively. On
the other hand, the scaling dimensions of the J2

z and J2
xy terms

are 1
2 �K+1 /K��1. Thus, when K�1, the J2 terms decrease

but the J1 terms grow when temperature is lowered.
In order to study the physics at the strong coupling regime

when J1 is of order 1, we use the Emery-Kivelson method by
applying a unitary transformation U=ei�2	K�s�0�Sz

to H.21 Af-
ter the unitary transformation and the rescaling of the
bosonic fields, we have

H̃ = U†HU

= H0 + �Sz�x�s�0�

+
2J2

z

a	
Sz sin��2	

K
�a�0��sin��2	K�a�0�� + �S− + S+�

�
 J1
xy

	a
cos��2	K�a�0�� +

J2
xy

	a
cos��2	

K
�a�0��� , �2�

where �=�2	KvF� −� 2
	KJ1

z . At the vicinity of the point �
=J1

xy =J2
z =J2

xy =0, we may calculate the scaling dimensions of
the Ji terms as before. The J1

xy and J2
xy terms become more

relevant because of the elimination of the e
i�s�0� factors by
the transformation. The J1

xy term has scaling dimension K
2 . It

is relevant when K�1. The J2
xy term has scaling dimension

1
2K and it is relevant when 1 /2�K�1.

A quantum dot coupled to two Luttinger liquid leads is

described by a Hamiltonian HL which is very similar to H̃ of
Eq. �2�. However, there is one crucial difference between HL

and H̃. In H̃, the two terms attached to the spin operators
S++S− are cos��2	K�a� and cos��2	 /K�a�, respectively. In
HL, the corresponding terms attached to S−+S+ are cos����
and cos����, where �� and �� are charge and spin bosonic
fields, respectively, which are independent from each other.5

In the present problem, �a and �a are dual fields of each
other, pinning the value of the �a field increases the fluctua-
tion of the �a field. We will see below that this is responsible
for the fact that the two-channel Kondo fixed pointed is
stable for K�1.

When K�1, the J1
xy term is the most relevant term. At low

temperatures, one expect the effective Hamiltonian of H̃ is
described by the fixed point Hamiltonian:
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H̃ef f = H0 +
2J1

xy

	a
Sx cos��2	K�a�0�� . �3�

To show that this fixed point is indeed stable, we
need to calculate the scaling dimensions of the
operators J2

xySx cos��2	
K �a�0��, 
�Sz�x�s�0�, and

J2
zSz sin��2	

K �a�0��sin��2	K�a�0�� at the vicinity of the
fixed point. 
� denotes the deviation from the Emery-
Kivelson line. The results are given in the third column in
Table I. We see that all these operators are irrelevant if
K�1. Which confirms that Eq. �3� is the low-temperature
effective Hamiltonian. Below we give some details of the
calculation.

To calculate the scaling dimension of

J2
xySx cos��2	

K �a�0��, we note that Sx commutes with H̃ef f, so
that we may set Sx to 
1 /2. As a result, one needs to calcu-
late the scaling dimension of cos��2	

K �a�0�� with the Hamil-
tonian

H̃
 = H0 

J1

xy

	a
cos��2	K�a�0�� . �4�

Equation �4� has the form of the Hamiltonian of a spinless
Luttinger liquid wire with an impurity backscattering term at
point x=0. One may interpret the cos��2	K�a�0�� as an im-
purity back scattering term with Luttinger liquid parameter
K�=K /2. At low temperatures, the “back scattering term” is
relevant for K��1. Thus, the cos��2	K�a�0�� term cuts the
Luttinger liquid wire into two separate pieces at x=0.22 As a
result, the point x=0 can be regarded as a point at the bound-
ary when J1

xy→�.
The effective Hamiltonian for half of the wire is H0�

=
vF

2 
0
L���x�a�x��2+ ��x�a�x��2�dx. Define chiral fields �L and

�R by the relations �a�x�=�L�x�−�R�x� and
�a�x�=�L�x�+�R�x� and apply the conditions �R�x�= �̃R�x�
and �L�x�=−�̃R�−x�, we have H0�=vF
−L

L ��x�̃R�x��2dx
and ei�a�x��2	/K=e−i��̃R�−x�+�̃R�x���2	/K. Define free bosonic

fields which are defined from −L to L, �̃�x�= �̃L�x�− �̃R�x�
and �̃�x�= �̃L�x�+ �̃R�x�, we have ei�a�x��2	/K

=e−i��̃�−x�−�̃�−x�+�̃�x�−�̃�x���	/2K. At x=0, ei�a�0,t��2	/K

=e−i��̃�0,t�−�̃�0,t���2	/K. As a result, the scaling dimension of
ei�a�0,t��2	/K at the boundary can be easily calculated. It is
1 /K instead of 1 /2K as is the case in the bulk. This well
known result20 is crucial because the J2

xySx cos��2	
K �a�0��

term is now irrelevant when K�1.

The calculations of the scaling dimension of the Sz�x�s�0�
term is similar to what have been done before in Ref. 23.
Since �s is governed by a free Hamiltonian, we have
�Sz����x�s���Sz�0��x�s�0��= �Sz���Sz�0����x�s����x�s�0��

In order to calculate �Sz���Sz�0��H̃ef f
, we note that Sz is the

sum of the raising and lowering operators of the eigenstates
of Sx, �
 �. Thus, we have

�− �eH̃ef f�Sz�0�e−H̃ef f�Sz�0��− � = �− �eH̃−�W†�0�e−H̃−�W�0��− �

= �− �W†���W�0��− �H̃−
�5�

where W is a unitary transformation which satisfies

W†e−H̃−�W=e−H̃+�.
Actually, we need to find a unitary operator W which

transforms �a to �a+� 	
2K . Indeed, W=e−i�	/2K��a�L�−�a�−L��,

where 2L is the length of the system. In order to calculate
�−�W†���W�0��−�H̃−

, we come back to the spinless Luttinger

liquid Hamiltonian interpretation of H̃−.
Suppose we have a spinless Luttinger liquid wire with an

impurity at x=0 and the left and right ends locate at −L and
L, respectively. At the strong coupling fixed point, the wire is
cut into two separate parts by the impurity. However, the left
half and the right half are described by free Hamiltonians
H0L and H0R, respectively. As a result, we have

�W†���W�0��H̃−
� �ei�	/2K��a�−L,��−��−L,0���H0L

��ei�	/2K��a�L,��−��L,0���H0R
�

1

�1/K . �6�

Since �x�s�0� has a scaling dimension of 1, we conclude that
the operator Sz�x�s�0� is irrelevant with scaling dimension
1 /2K+1.

One may calculate the scaling dimension of the
J2

zSz sin��2	
K �a�0��sin��2	K�a�0�� term in a similar way.

This term has scaling dimension 1
2K + 1

K . It is irrelevant when
K�1.

We have shown above that the two-channel fixed point is
stable. At the vicinity of this fixed point, the system is de-

scribed by H̃ef f in Eq. �3�. It is interesting to note that H̃ef f
can be regarded as a generalization of the fixed point Hamil-
tonian of the two-channel and four-channel Kondo non-
Fermi liquid fixed-point Hamiltonians. The two-channel and

four-channel cases are described by H̃ef f with K=1 and K
=3 /2 respectively.26 One of the most remarkable features of
the multichannel Kondo effect is the existence of fractionally
degenerate ground state. For example, the two-channel and
four-channel Kondo models have residual entropy of 1

2 ln 2
and 1

2 ln 3, respectively.24,25 This motivates us to study the

residual entropy of H̃ef f for K�1.
In order to calculate the residual entropy, we first calcu-

late the partition function Z=Tr�exp−�H̃ef f�. Since Sx com-

mutes with the H̃ef f, the states can be labeled as �
 1
2 ,�a�. We

may write Z=Z++Z−=Tr�exp−�H̃+�+Tr�exp−�H̃−�. Remember
that the integral of H0 run from −� to +� if L→� is taken.
However, we may define bosonic fields such that the positive
axis is folded to the negative axis.27 After folding, the effect

TABLE I. Scaling dimensions of the operators �Op.� at different
fixed points �FPs�. �J2=0 for all fixed points, only coefficients of
corresponding operators shown.�

Op.\FPs J1=0 �=J1
xy =0 �=0, J1

xy→�

J1
z�
�� 1 1 1+1 /2K

J1
xy K K /2 N /A

J2
z 1

2 �K+1 /K� 1
2 �K+1 /K� 1 /K+1 /2K

J2
xy 1

2 �K+1 /K� 1 /2K 1 /K
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of the cosine term in H̃
 is to introduce a Dirichlet boundary
condition. The actual value of �a�0,��, whether it is pinned
at �2n+1�	 /�2	K or 2n	 /�2	K, does not affect the parti-
tion function.28 Thus, we have Z+=Z− and Z=2Z+. The im-

purity entropy of H̃+ has been calculated in Ref. 27. It is
ln g=ln�K /2, where g is the “ground-state degeneracy” dis-
cussed in Ref. 25. Together with the contribution from Sx, the
total impurity entropy is

S = ln�2K . �7�

Substituting K=1 and K=3 /2 into Eq. �7� reproduces the
impurity entropy results, calculated by the Bethe ansatz and
boundary conformal field theory, for the two-channel and
four-channel Kondo effects with noninteracting electrons,
respectively.24,25

We show above that the residual impurity entropy is de-
termined by the boundary term. On the other hand, the ther-
modynamic properties are determined by the leading irrel-
evant operators �LIO� near the fixed point. Since the
irrelevant operators have correlation functions of the form
��O���O�0���= � 	T

sin�	T�� �
2�, the second-order correction of the

free energy 
F����T�=−�2
�0

�/2d�� 	T
sin�	T�� �

2� where �0 is the
cut-off time.23

Near the strong coupling fixed point, the
J2

xy

	acos��2	
K �a�0��

term with scaling dimension 1 /K is the LIO if 1 /2�K�1.
We have 
F�T2/K−1+0�T2�, where the T2/K−1 term is univer-
sal and independent of the cut-off time �0 and the 0�T2� term
has a �0 dependent coefficient. As a result, the impurity spe-
cific heat Cimp�T2/K−2 if 2 /3�K�1. However, when
K�2 /3, the free energy is dominated by the 0�T2� term and
Cimp�T.

In the above calculations, we have assumed that the two
helical edges have equal chemical potential. If a small bias is
applied across the two edges, there should be a current flow-
ing from one edge to the other. At temperatures much higher
than the Kondo temperature, the linear conductance across
the edges can be written as G� �2�J2

xy�2+ �J2
z�2�TK+1/K−2 by

pertubation to second order. At low temperatures, the con-
ductance can be obtained by substituting the normalized
value of J2 into the high temperature expression of G. As we
show above, J2 decreases near the fixed point with
J1

xy =J1
z =J2=0 and J1 grows. If 1 /2�K�1, however, when

the J1 terms are of order 1, the J2
xy term becomes relevant and

grows. When the temperature decreases further, the strong
coupling fixed point with J1

xy→� is reached. Near this fixed
point, J2

xy and J2
z are irrelevant and flow to zero. As a result,

the conductance acquires a nontrivial temperature depen-
dence. On the other hand, if K�1 /2, the J2 terms are always
irrelevant and decrease to zero. Consequently, the conduc-
tance decreases monotonically as the temperature lowers.
The temperature dependence of the linear conductance at dif-
ferent fixed points are shown in the Fig. 1�b�.

We show above that a quantum dot coupled to two helical
edge states of 2D topological insulators is described by a
Kondo Hamiltonian. Weak repulsive interaction with K�1
on the edges, drives the system to a two-channel fixed point
at low temperatures. At the fixed point, the residual impurity
entropy is ln�2K. The impurity specific heat and the conduc-
tance across the two edges through the quantum dot are also
studied.
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