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1 Introduction

The existence of plenty of quantised flux degrees of freedom supports the idea of a large

landscape of vacuum solutions in string theory. This fact led to the proposal of Bousso

and Polchinski [1] (building on previous ideas of Brown and Teitelboim [2, 3]) for an

understanding of the smallness of the cosmological constant Λ4. They argued that in string
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theory there are plenty of non-propagating 3-forms CA3 from the RR and NS closed string

sector. Although they do not propagate their (quantised) fields strengths FA4 contribute

to the vacuum energy, so that the scalar potential of the observed physics would have a

structure1

VBP =
∑
A,B

ZABF
A
4 F

B
4 + Λ0 (1.1)

where the sums run over all quantised 4-form fluxes FA4 , and ZAB is a positive definite

metric depending on all moduli. Here Λ0 is some, large (of order Mp) and typically neg-

ative bare contribution to the cosmological constant. They showed that for a sufficiently

large number of fluxes, there are choices resulting in a cosmological constant exponentially

small. This approach assumes that the moduli are somehow fixed, so one actually needs a

mechanism for fixing all moduli before addressing the c.c. issue.

A lot of work, starting with the work in KKLT [26] (see also [27–30]), has been ded-

icated to study full moduli fixing in the context of Type IIB orientifolds. The complex

structure and dilaton fields are fixed by the generic presence of NS and RR closed string

fluxes, whereas Kähler moduli are fixed by non-perturbative effects. In this way one ob-

tains AdS vacua which must be later on up-lifted by the addition in the background of

anti-D-branes or other mechanism providing a positive energy. In the IIB route map the

precise form of the scalar potential in eq. (1.1) is not obvious. In particular the role of

the 4-forms as in the BP mechanism is not apparent although in principle the c.c. may be

made small by an analogous mechanism.

The case of the flux scalar potential for Type IIA orientifolds has been less explored. It

has the shortcoming that the mathematical structure of the compactification geometry in

the presence of general fluxes is non-trivial. On the other hand, in Calabi-Yau orientifold

compactifications the standard RR and NS flux superpotential involves both Kähler moduli

and complex structure fields, offering the possibility of fixing all moduli just by fluxes,

without resorting to any non-perturbative effects. Indeed, examples of AdS vacua with all

moduli fixed have been obtained in the literature, both SUSY and non-SUSY [31–34]. No

dS vacua have been obtained with just standard RR and NS fluxes, although generalised

non-geometric [35] and S-dual [34] fluxes could perhaps allow for such vacua, see [36–38].

Still, the study of Type IIA orientifold vacua has been so far much more incomplete.

In the present paper we revisit and study in detail the structure of the flux potential

in Type IIA orientifolds, extending previous analysis in various directions. A prominent

role in our results is played by the four-dimensional 4-forms of the theory, which appear

in a form reminiscent of that in the BP mechanism. In fact we find that the part of the

action density relevant to the scalar potential has the qualitative structure

− ZABF
A
4 F

B
4 + 2FA4 ρA − ZABρAρB , (1.2)

where the index A runs over all the fluxes of the compactification or equivalently over

the four-dimensional four-forms FA4 . On the one hand, ρA are integer polynomials on the

unit-period axions of the theory, whose coefficients depend only on flux quanta and other

1For pioneering and more recent work on 4-forms see [4–25] and references therein.
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topological data. On the other hand, the tensor ZAB depend only on the saxions of the

theory. After integrating the equations of motion for the 4-forms one obtains for the scalar

potential an expression of the form

V =
1

8κ2
4

ZABρAρB . (1.3)

In fact one can perform an axion dependent rotation R so that ~q = Rt~ρ is a vector

containing only the different flux quanta. Then the new metric is given by Z′ = RtZR

and depends both on the axions and the saxions of the compactification. One then has

a bilinear factorised structure for the scalar potential, reminiscent of the BP structure.

There are however a number of differences with respect to BP, in particular the metric Z′

is not positive definite. This bilinear structure in terms of 4-forms was already shown to

appear for the piece of the potential coming from RR and NS in [19]. In this paper we show

that the full potential, including the contribution due to the presence of localised sources

may still be written in this form. In this generalisation, that also extends the analysis

in [21], the inclusion of open string moduli and fluxes is particularly delicate and requires

a careful treatment of the redefinition of the open and closed string axions. In fact, we find

a expression for the 4d holomorphic variables that differs from previous proposals in the

literature [21, 39, 40], but which is essential to obtain a holomorphic flux superpotential.

This factorised bilinear structure makes more transparent the discrete symmetries of

the effective theory. In particular we find that the transformation of axions and fluxes

under discrete shift symmetries are encapsulated in the rotation matrix R. Moreover, the

fact that one can write ~ρ = Rt−1~q is a consequence of gauge invariance at the microscopic

level, and can be translated into the anomalies developed by the different branes of the

theory. In particular the matrix R is specified by the Freed-Witten anomalies [41, 42] of 4d

strings coupling to the axions in the presence of RR and NS fluxes. Those anomalies are

cured by 4d domain walls ending on such 4d strings [43], and coupling to the 4d 3-forms

of the effective theory.

The present formulation of the Type IIA orientifold vacua may be considered an alter-

native way to the standard N = 1 supergravity formulae that provides the scalar potential

from a Kähler potential and a superpotential W . This alternative is appropriate when

all the scalar fields come along with axion-like scalars featuring discrete shift symmetries.

In the 4-form formulation one can obtain the full scalar potential from the moduli met-

rics and one of the ρ’s, which we dub as the master axion polynomial ρ0, that couples to

the universal 4-form F 0
4 present in any compactification. Interestingly, we find that the

superpotential may be directly obtained from ρ0 as

W = e
isλ∂

φλρ0 . (1.4)

where φλ denotes all the axions in the theory and sλ the corresponding saxion. This applies

to both closed- and open-string axions. Furthermore, all the rest of the polynomials may

be obtained from ρ0 by derivation with respect to the axions. So ρ0 may be considered as

the generator of all the 4-form coupling to axions and carries all the information contained

in the superpotential.
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The above factorised quadratic expression for the scalar potential may have interesting

applications. It shows explicitly the discrete shift axion symmetries of the theory, which is

an important ingredient in theories of F-term [17] axion-monodromy inflation models [44–

47]. The structure we obtain here is a generalisation of the Kaloper-Sorbo model [14] to

the multiple axion case of string theory, including at the same time closed and open string

axions. The inclusion in our analysis of open string moduli may be particularly interesting

since it has been argued [22, 23, 48, 49] that such moduli are less constrained by swampland

arguments in their use as large field inflatons. The quadratic expression that we obtain

may also be useful to search for minima in flux potentials. The fact that all dependence

on axions goes through the ρ-polynomials facilitates the analysis of minima in the axion

directions. Also, since the theory is invariant under axion shift symmetries, the values of

the saxion moduli at the minima are rational functions of these ρ’s [22, 23]. Up to now

only AdS minima have been found in this class of Type IIA orientifolds in the absence of

open string moduli. Our formulae open the way to a systematic search of minima including

open string moduli and fluxes. In particular they may play a role in the systematic search

for dS vacua in compactifications including open string moduli.

The structure of the rest of this paper is as follows. In section 2 we introduce the

effective action of Type IIA Calabi-Yau orientifold compactifications in the presence of

closed- and open-string fluxes, keeping track of the 4-forms appearing upon dimensional

reduction. This is done both for the closed string action and for the DBI+CS action

associated to the background D6-branes. In section 3 we describe how the full classical

scalar flux potential may be written as a bilinear form on the ρ-polynomials, both in the

presence of closed- and open-string moduli and fluxes. In section 4 we analyse the discrete

symmetries of these theories and show how the discrete symmetries shifting axions and

fluxes may be understood in terms of 4d strings Freed-Witten anomalies. In section 5 we

show how the superpotential may be derived starting from the master polynomial ρ0 as in

eq. (1.4) and how all the rest of the ρ axion polynomials may be obtained by derivation

of ρ0 with respect to all the axions. In section 6 we describe how the N = 1 supergravity

moduli auxiliary fields may also be expressed in terms of the ρ polynomials and the metrics.

We leave section 7 for our last remarks.

Several technical details are relegated to the appendices. In appendix A we perform

the dimensional reduction giving rise to the 4d four-form action. In appendix B we recover

the type IIA flux potential as an F-term potential from the standard N = 1 supergravity

formula and the Kähler and superpotentials used in the main text. In appendix C we discuss

the case where D6-brane position moduli are periodic directions in moduli space, and can

be treated as 4d axions. In appendix D we show how the potential bilinear structure is

also present in toroidal orientifolds with metric fluxes, and draw an interesting connection

between the Bianchi identities and the invertibility of ZAB. In appendix E we illustrate

how the discrete symmetries of the NS axions in the same orientifold are obtained as a

subgroup of its SL(2,Z)3 duality group.

2 Four-forms and type IIA orientifolds

Let us consider type IIA string theory compactified in an orientifold of R1,3 ×M6 with

M6 a compact Calabi-Yau 3-fold. Following the standard construction [50–53], we take

– 4 –
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the orientifold action to be generated by Ωp(−1)FLR, where Ωp is the worldsheet parity

reversal operator, FL is the space-time fermion number for the left-movers, and R is an

internal anti-holomorphic involution of the Calabi-Yau. This involution acts on the Kähler

2-form J and the holomorphic 3-form Ω of M as

RJ = −J , RΩ = Ω . (2.1)

The fixed locus ΠO6 of R is one or several 3-cycles of M6 in which O6-planes are located.

The RR charge of such O6-planes can be cancelled by a combination of background fluxes

and 4d space-time filling D6-branes wrapping three-cycles Πα of M6, together with their

orientifold images.2 More precisely, RR tadpole cancellation requires that the following

equation in H3(M6,Z) is satisfied∑
α

([Πα] + [RΠα])−m[ΠH ]− 4[ΠO6] = 0 (2.2)

where ΠO6 stands for the O6-plane loci, [ΠH ] is the Poincaré dual of the NS flux class [H3]

and m ∈ Z is the quantum of 0-form RR flux, see below for a precise definition.

In the absence of internal background fluxes, dimensional reduction to 4d [39, 40, 55]

will yield a number of massless periodic scalars that are identified as axions.3 The axions

arising from the closed string sector can be described by first specifying a basis of integer p-

forms in which the Kähler two-form J and holomorphic three-form Ω ofM6 are expanded.

Indeed, in general we have that

eφ/2J = taωa (2.3)

where φ is the 10d dilaton, J is computed in the Einstein frame and l−2
s ωa are harmonic

representatives of H2
−(M6,Z), with l2s = 2πσ = 4π2α′. The Kähler moduli ta are then

understood as the saxionic partners of the B-field axions ba, defined as

B = baωa . (2.4)

Similarly, we have the expansion of the holomorphic three-form Ω = Xλαλ−Fλβλ in terms

of a symplectic basis l−3
s (αλ, β

λ) ∈ H3(M6,Z) such that l−6
s

∫
M6

αρ ∧ βσ = δσρ . One then

splits such decomposition into even (αK , β
Λ) ∈ H3

+(M6) and odd (αΛ, β
K) ∈ H3

−(M6)

three-forms

Re Ω = XKαK −FΛβ
Λ Im Ω = XΛαΛ −FKβK (2.5)

and defines the RR axions of the compactification as

C3 = ξ′KαK − χ′ΛβΛ + . . . (2.6)

which will pair up with the complex structure moduli above to form complex scalars. For

simplicity in the following we will consider compactifications where the forms (αΛ, β
Λ)

are absent.
2For models that also consider D8-branes on coisotropic cycles see [54].
3These axions are in general subject to potentials generated by world-sheet and D-brane instantons.

In this work we will consider a large volume regime of the compactification where such non-perturbative

contributions can be neglected.
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In addition there will be axions arising from the open string sector. In particular there

will be b1(Πα) Wilson line axions θiα for each D6-brane wrapping a three-cycle Πα. Such

axions will combine with the worldvolume deformation moduli of BPS D6-branes to form

complex scalars, and together they will redefine the notion of holomorphic variables in the

closed string sector. We relegate the study of open string moduli to subsection 2.2, and

for now focus on the compactifications where they do not appear.

As shown in [55–57], in the presence of background fluxes the above set of scalars de-

velop an F-term scalar potential, which can be directly computed by dimensional reduction

to 4d. More recently, it was pointed out that such effective potential can also be entirely

understood as arising from the 4d coupling of axions to four-forms [19]. In the following we

will review this four-form formulation of the type IIA potential along the lines of [19, 21],

and generalise the results therein.

2.1 Closed string fluxes, axions and 4-forms

Let us first rederive the closed string scalar potential by using the approach of [19, 21].

For this we consider the type IIA 10d supergravity action in the string frame and the

democratic formulation

S10d
IIA =

1

2κ2
10

∫
d10x

√
|g|e−2φ

(
R+ 4(∂φ)2

)
− 1

4κ2
10

∫
e−2φH ∧ ?10H +

1

2

5∑
n=0

G2n ∧ ?10G2n (2.7)

where κ2
10 = l8s/4π, and we have ignored for the moment the contribution of localised

sources. Of particular interest to us is the last term, which contains the dependence on

the RR p-form potentials Cp with p = 1, 3, 5, 7, 9. It is useful to arrange such potentials in

the polyforms

C = C1 + C3 + C5 + C7 + C9 or A = C ∧ e−B (2.8)

known as C and A-basis [58]. The corresponding gauge invariant field strengths are then

given by

G = dC−H ∧C + Ḡ ∧ eB = eB ∧
(
dA + Ḡ

)
(2.9)

with Ḡ a formal sum of closed (p+ 1)-forms ofM6 to be thought as the background value

for the internal RR fluxes. The A-basis is quite useful in expressing the Bianchi identities

and flux quantisation

l2s d
(
dA + Ḡ

)
= −

∑
α

δ(Πα) ∧ e−σFα and
1

lps

∫
πp+1

dAp + Ḡp+1 ∈ Z (2.10)

with Πα ∈ M6 the internal cycle wrapped by a source and δ(Πα) its bump-function with

support on Πα and indices transverse to it, such that lp−9
s δ(Πα) lies in the Poincaré dual

class to [Πα]. In addition Fα is the quantised worldvolume flux threading Πα and πp+1 ∈
M6 is any (p + 1)-cycle not intersecting the Πa’s. In the absence of localised sources the

– 6 –
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Ap are globally well-defined and the Ḡp+1 are quantised, so one can define the flux quanta

as the following integer numbers

m = lsḠ0, ma = − 1

l5s

∫
M6

Ḡ2∧ ω̃a, ea =
1

l5s

∫
M6

Ḡ4∧ωa, e0 = − 1

l5s

∫
M6

Ḡ6 (2.11)

with ω̃a the harmonic four-forms dual to ωa in the sense that l−6
s

∫
M6

ωa ∧ ω̃b = δba.

One important feature of the above 10d supergravity action is that the p-form degrees

of freedom are doubled. In order to halve them one must impose the Hodge duality relations

G2n = (−)n ?10 G10−2n. (2.12)

either by hand or by adding a series of Lagrange multipliers to the action [58]. In the

latter case one obtains a mother action which can be dimensionally reduced to 4d [21]. As

discussed in appendix A, one then obtains a 4d effective action of the form

S4d = − 1

16κ2
4

∫
R1,3

ZABE
A
4 ∧ ∗4EB4 −

1

16κ2
4

∫
R1,3

ZAB%A%B ∗4 1 +
1

8κ2
4

∫
R1,3

EA4 %A (2.13)

plus the kinetic terms for the RR axions (2.6). Here κ2
4 = κ2

10/l
6
s , E

A
4 are 4d four-forms

and %A are polynomials of fluxes and scalars, related to each other by 4d Hodge duality as

∗4 EA4 = ZAB%B , (2.14)

which can be deduced either from (2.13) or by dimensionally reducing (2.12). By plugging

this relation back into the 4d action one can see that the first two terms of (2.13) cancel

each other. If we also use (2.14) to eliminate the four-form dependence in the third term

we obtain a scalar potential of the form

V =
1

κ2
4

ZAB

8
%A%B (2.15)

which has a clear bilinear structure.

Depending on the choice of four-form basis EA4 the quantities ρA and ZAB will have

one expression or the other. One obvious choice comes from reducing the RR potentials in

the C-basis to Minkowski three-forms. We have that

C3 = c0
3 + . . . C5 = ca3 ∧ ωa + . . . C7 = d̃3 a ∧ ω̃a + . . . C9 = d̃3 ∧ ω6 + . . . (2.16)

where (c0
3, c

a
3, d̃3 a, d̃3) are three-forms with their indices in R1,3, ωa and ω̃a are the harmonic

forms ofM6 defined above and ω6 is the harmonic six-form ofM6 such that l−6
s

∫
M6

ω6 = 1.

Then, dimensional reduction of the RR 10d field strengths reads

G4 = F 0
4 + . . . G6 = F a4 ∧ ωa + . . . G8 = F̃4 a ∧ ω̃a + . . . G10 = F̃4 ∧ ω6 + . . . (2.17)

where the 4d four-forms are given by

F 0
4 = dc0

3 , F a4 = dca3 − dba ∧ c0
3 ,

F̃4 a = dd̃3 a −Kabcdbb ∧ cc3 , F̃4 = dd̃3 − dba ∧ d̃3 a . (2.18)

– 7 –
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For simplicity let us first assume a vanishing internal NS flux H. Then, if as in [19, 21] we

take EA4 = (F 0
4 , F

a
4 , F̃4 a, F̃4) we have that %A = (ρ0, ρa, ρ̃

a, ρ̃) with

lsρ0 = e0 − baea +
1

2
Kabcmabbbc − m

6
Kabcbabbbc

lsρa = ea −Kabcmbbc +
m

2
Kabcbbbc

lsρ̃
a = ma −mba

lsρ̃ = m

(2.19)

where Kabc = l−6
s

∫
M6

ωa ∧ ωb ∧ ωc are the triple intersection numbers of M6. In addition

ZAB = e−K

32 GAB with

G =


1

4gab
9
K2 g

ab

36
K2

 (2.20)

where K ≡ Kabctatbtc, and

gab =
3eφ/2

2Kl6s

∫
M6

ωa ∧ ?6ωb gab =
2K

3eφ/2l6s

∫
M6

ω̃a ∧ ?6ω̃
b (2.21)

are 2 and 4-form metrics that only depend on the saxions ta. Finally

eK =
e−φ/2

8V 3
6

(2.22)

with V6 = l−6
s Vol(M6) the compactification volume in Einstein frame and string units.

Putting all this together one finds that the scalar potential reads

VRR =
1

κ2
4

eK
[
4ρ2

0 + gabρaρb +
4

9
K2gabρ̃

aρ̃b +
1

9
K2ρ̃2

]
(2.23)

which clearly has the bilinear structure of (2.15). However, with this explicit expression

we find a more specific structure, namely that

i) the ρ’s only depend on the fluxes (linearly) and on the axions ba (polynomially)

ii) ZAB only depends on the saxions ta

Alternatively, one may consider the choice of four-forms given by EA4 =

(D0
4, D

a
4 , D̃4 a, D̃4), which are related to the previous choice by the following change of basis

F 0
4

F a4

F̃4a

F̃4

 =


1 0 0 0

ba δab 0 0

1
2Kabcb

bbc Kabcbc δba 0

1
3!Kabcb

abbbc 1
2Kabcb

abc bb 1




D0

4

Db
4

D̃4b

D̃4

 . (2.24)

– 8 –
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One can check that this new set of four-forms are exact. More precisely, they are the

field strengths of the Minkowski three-forms obtained from dimensionally reducing the RR

potentials with an Ansatz similar to (2.16) but now working in the A-basis.

With this choice one finds that ls%A = (e0, ea,m
a,m) and

Z =
e−K

32
Rt ·G ·R (2.25)

with R the matrix in (2.24). We may now plug in these expressions into (2.13) and integrate

out the four-forms in favour of %A and ZAB. Because now the four-forms are exact, this

amounts to apply the procedure of appendix E.2 of [56], after which we again obtain (2.23).

Notice that with this description we obtain an even more precise description of the bilinear

structure of the potential (2.15). Namely

i) ls%A are quantised fluxes

ii) ZAB depends both on the saxions ta and axions ba, but it factorises as (2.25), with

G = G(t) and R = R(b)

In the following sections, we will show that this is a quite general statement, even when

we add more complicated ingredients to the compactification.

Finally, let us recall that the same result for (2.23) can be derived in the context of

the standard N = 1 supergravity formulation. Following the conventions in [55], one may

do so by defining the complex Kähler variables

T a = ba + ita (2.26)

which enter the Kähler potential

KK = −log

(
i

6
Kabc(T a − T̄ a)(T b − T̄ b)(T c − T̄ c)

)
, (2.27)

and the dilaton plus complex structure variables

N ′K = l−3
s

∫
M6

Ωc ∧ βK , Ωc = C3 + iRe(CΩ) (2.28)

where C ≡ e−φe
1
2

(KCS−KK) stands for a compensator term with KCS = −log
(
i
l6s

∫
Ω ∧ Ω̄

)
.

These variables enter the Kähler potential

KQ = −2 log

(
−1

4
Re(CXK)Im(CFK)

)
= −2 log

(
−1

4
Im(FKL)n′Kn′L

)
(2.29)

where Im(FKL) are zero order homogeneous functions of n′K ≡ ImN ′K . Adding up both

expressions we have that the full Kähler potential K = KK + KQ indeed satisfies the

relation (2.22). Finally, adding the RR flux superpotential

lsWK = e0 − eaT a +
1

2
KabcmaT bT c −m1

6
KabcT aT bT c (2.30)

one recovers (2.23) as the F-term scalar potential, by applying the standard formula of 4d

N = 1 supergravity.
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Adding H-flux. Let us now consider adding a non-vanishing internal profile for the

NS-flux H

H = l−1
s

∑
K

hKβ
K hK ∈ Z (2.31)

and then expand the Hodge dual flux H7 = e−2φ ?10 H in terms of even three-forms

H7 =
∑
K

HK
4 ∧ αK (2.32)

obtaining additional Minkowski 4-forms HK
4 coming from the NS sector [19]. Then, on the

one hand, dimensionally reducing the H-flux piece in (2.7) we obtain

S4d
NS =

1

8κ2
4ls

∫
R1,3

HK
4 hK . (2.33)

Here the 10d Hodge duality relation translates into

∗4 HI
4 = 32 l−1

s eKcIJhJ (2.34)

with cIJ the inverse of

cIJ =
eKQ/2

l6s

∫
M6

αI ∧ ?6αJ . (2.35)

Hence, after imposing (2.34) we recover a contribution to the potential of the form

VNS =
1

l2sκ
2
4

4eKcIJhIhJ . (2.36)

On the other hand, the RR piece of the action reads as in (2.13) but with the replace-

ment e0 → e0 − hKξ′K , see appendix A. That is, in the basis EA4 = (F 0
4 , F

a
4 , F̃4 a, F̃4) we

have that

lsρ0 = e0 − baea +
1

2
Kabcmabbbc − m

6
Kabcbabbbc − hKξ′K (2.37)

and all the other ρ’s remain the same. Therefore one again obtains a contribution to the

scalar potential of the form (2.23) but with this new expression for ρ0.

Finally, due to the contribution of the NS flux H and RR flux m to the tadpole

conditions (2.2) the total tension of the D6-branes will not cancel the negative tension

of the O6-planes. This results in an extra contribution to the the scalar potential, that

reads [19, 33]

Vloc =
4

3κ2
4l

2
s

eKKmn′KhK . (2.38)

In supersymmetric vacua such contribution is negative, reflecting the corresponding D-

brane deficit. To sum up, we end up with a full scalar potential of the form

V = VRR + VNS + Vloc (2.39)

which can again be derived as a standard 4d N = 1 supergravity F-term potential [55].

For this one again needs to consider the Kähler potential K = KK +KQ with the previous

– 10 –



J
H
E
P
0
9
(
2
0
1
8
)
0
1
8

expressions (2.27) and (2.29), and the superpotential W = WK + WQ, with WK given

by (2.30) and

lsWQ = −hKNK (2.40)

with NK = N ′K .

It is interesting to notice that one can easily relate the first two pieces of (2.39) to an

effective axion-four-form action of the form (2.13), by using the duality relation (2.34). As

before, one can do it in different basis of 4d four-forms, of which two choices are particularly

interesting. The most obvious one from the above discussion is to take

EA4 = (F 0
4 , F

a
4 , F̃4 a, F̃4, H

K
4 ) (2.41)

so that

%A = (ρ0, ρa, ρ̃
a, ρ̃, ρK) lsρK = hK (2.42)

and

Z =
e−K

32

(
G

C

)
(2.43)

with G given by (2.20) and the entries of C given by (2.35). Alternatively one may consider

the following rotated basis of four-forms
F 0

4

F a4
F̃4a

F̃4

HK
4

 =


1 0 0 0 0

ba δab 0 0 0
1
2Kabcb

bbc Kabcbc δba 0 0
1
3!Kabcb

abbbc 1
2Kabcb

abc bb 1 0

ξ′K 0 0 0 δKL




D0

4

Db
4

D̃4b

D̃4

SL4

 (2.44)

where the above quantities read

ls%A = (e0, ea,m
a,m, hK) (2.45)

and

Z =
e−K

32
Rt

(
G

C

)
R (2.46)

with R the axion-dependent rotation matrix in (2.44). Again, when writing down these

potential pieces as (2.15), we recover a bilinear structure with factorised dependence on

the saxions, axions and flux quanta. Remarkably, as we will discuss in the next section,

this statement generalises for the full scalar potential (2.39), including the piece Vloc.

2.2 Open string fluxes and moduli

Let us now consider the presence of D6-branes wrapping three-cycles Πα of M6. For such

localised objects to preserve 4d N = 1 supersymmetry they must wrap special Lagrangian

three-cycles with vanishing worldvolume flux. That is they must satisfy

Jc|Πα − σFα = Fα + iJ |Πα = 0 , (2.47)
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where Fα = B|Πα − σFα is the gauge invariant worldvolume flux, and

Im Ω|Πα = 0 . (2.48)

Failure to satisfy (2.47) in some region of the closed string moduli space will be seen as

a non-vanishing F-term in the 4d effective theory, and this will modify the above F-term

scalar potential. This time the potential will also involve light open string fields of the

compactification.

In general one may describe the open string moduli of a compactification in terms of a

set of reference special Lagrangian three-cycles Π0
α that, together with their orientifold im-

ages RΠ0
α, satisfy the RR tadpole condition (2.2). Then one defines the space of light open

string adjoint fields by considering the set of D6-brane Wilson lines and those three-cycle

deformations that preserve the special Lagrangian condition. Due to McLean’s theorem [59]

there is one field of each class per integer harmonic one-form l−1
s ζi ∈ H1(Π0

α,Z) in each Π0
α,

and so they can be paired up into
∑

α b1(Π0
α) complex fields Φi

α, i = 1, . . . , b1(Π0
α). Equiv-

alently, one may count such open string modes by a basis of integer harmonic two-forms

l−2
s ηj ∈ H2(Π0

α,Z), defined such that
∫

Π0
α
ζi ∧ ηj = l3sδ

j
i . In particular one may define the

open string moduli as [21, 39]

Φi
α =

2

l4s

∫
Cα4

(
Jc − σF̃α

)
∧ η̃i (2.49)

where ∂Cα4 = Πα −Π0
α is a four-chain that represents the homotopic deformation of Π0

α to

a new special Lagrangian Πα and F̃α, η̃i are the extensions of the D6-brane worldvolume

field strength F = dA and of the two-form ηi to such a four-chain. In practice we may

describe this open string field as

Φi
α = T af ia α − θiα (2.50)

with

θiα =
2

l4s

∫
Π0
α

σAα ∧ ηi f ia α =
2

l4s

∫
Cα4
ωa ∧ η̃i (2.51)

see [21] for more details.4

If we neglect the effect of open string worldsheet instantons, there are two different

mechanisms by which these open string fields may enter the type IIA scalar potential. The

first one consists in adding a non-trivial profile for the worldvolume flux F along the two-

cycles πi2 of the special Lagrangian Π0
α, which are Poincaré dual to the quantised one-forms

l−1
s ζi. That is, we consider the following worldvolume flux

σFα = σdAα + nαF i η
i nF i ∈ Z (2.52)

which clearly violates the F-term condition (2.47). The second mechanism is to consider

that such two-cycles πi2 are non-trivial in the homology of the ambient space [60], or in

other words that some of the following integer numbers

nαa i =
1

l3s

∫
Πα

ωa ∧ ζi (2.53)

4Our definition of the open string fields differs by a global sign as compared to the one in [21], chosen

like this for later convenience.
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are non-vanishing. As a result, when we move in the complexified Kähler moduli space the

F-term condition (2.47) will be also generically violated.

One may partially detect the effect of such F-term breaking by evaluating the DBI

piece of the action of each D6-brane. Whenever the combined source of supersymmetry

breaking is small in string units, the corresponding excess of energy is well-approximated

at the two-derivative level by the following scalar potential [61, 62]

VDBI =
∑
α

eK

l2sκ
2
4

Gijα (nαF i − nαa iT a)
(
nαF j − nαa j T̄ a

)
(2.54)

where, as in (2.2), α runs over pairs of D6-branes related by the orientifold action. Here

Gijα is the inverse of

Gαij =
3e−φ/4

4Kl3s

∫
Π0
α

ζi ∧ ∗ ζj . (2.55)

and we have defined

nαF i = nαF i −
1

2
gKiαhK and gKiα =

2

l4s

∫
Cα4
βK ∧ ζ̃i . (2.56)

with ζ̃i the extension of ζi to Cα4 .

Nevertheless, this is not the only effect of considering such D6-brane configurations.

Indeed, one finds that the F-term scalar potential is further modified by terms that, un-

like (2.54), depend on the open string moduli. The detection of such extra terms is not so

obvious, and one may do so by computing the increase in energy by the backreaction of

such D6-branes [60] and by evaluating their Chern-Simons piece of their action [21, 61, 62].

The combined effect is however rather simple to describe. It amounts to again consider a

4d effective action of the form (2.14) with the same four-forms as before, but where the %A
have been shifted by an open-string dependent term. Indeed, as discussed in appendix A

in the presence of H-flux we have that

%A = (ρ0 + υ0, ρa + υa, ρ̃
a + υ̃a, ρ̃, ρK) (2.57)

with ρ0 given by (2.37), the other ρ’s by (2.19) and the contribution to the υ’s for each

D6-brane α by

lsυ0 =(bcnαc i − nαF i)(bdf id α − θiα) +
1

2
hKb

aHK
aα −

1

2
hKg

K
iαθ

i
α

lsυa =− nαa i(bcf ic α − θiα)− (bcnαc i − nαF i)f ia α −
1

2
hKHK

aα

lsυ̃
a =qaα = Kab

(
nαb if

i
c α + nαc if

i
b α

)
tc .

(2.58)

Here qaα and HK
aα are functions of the D6-brane position moduli defined by

qaα =
2

l4s

∫
Cα4
ω̃a and ∂ImΦiβ

(
taHK

aα

)
= gKiαδαβ , (2.59)

Kab is the inverse of Kab = Kabctc and we have used that Kabcqcα = nαa if
i
b α + nαb if

i
c α [21].

As a result of these shifts, the combined contribution to the scalar potential of the 10d RR

– 13 –



J
H
E
P
0
9
(
2
0
1
8
)
0
1
8

field strengths and the D6-brane Chern-Simons actions add up to the bilinear term (2.15),

with Z as above (2.20) and the %A depending on the fluxes, closed string axions and open

string moduli.

To sum up, we find that the type IIA scalar potential in the presence of RR, NS and

open string fluxes is given by

V = VRR+CS + VNS + VDBI + Vloc (2.60)

As before, one may reproduce this whole expression in terms of a 4d N = 1 supergravity F-

term potential. Indeed, as shown in appendix B the same expression follows if we consider

the superpotential

W = WK +WQ +WD6 (2.61)

with WK given by (2.30), WQ by (2.40) and

lsWD6(Φ) = −Φi
α(nαF i − nαa iT a) + lsW0 . (2.62)

where for simplicity we have suppressed the index α running over all D6-branes. Finally, W0

is a constant piece defined in terms of the reference three-cycles {Π0
α}, see appendix B. One

important difference with the case without open strings is that the holomorphic variable

NK that enters WQ is no longer the geometric variable N ′K defined in (2.28), but instead it

gets redefined by the open string moduli. More precisely from the discussion of appendix B

we find that

NK = N ′K +
1

2

∑
α

(
gKiαθ

i
α − T aHK

aα

)
, (2.63)

which differs from previous identifications of the holomorphic variables in the literature,

like those in [21, 39, 40]. Rewriting the Kähler potential K = KK +KQ in terms of these

new variables one indeeds reproduces the scalar potential (2.60), as shown in appendix B.

3 The scalar potential as a bilinear form

While not obvious, we will now show that one may also rewrite the full F-term poten-

tial (2.60) in the bilinear form (2.15). More precisely, one may take a choice of basis such

that the %’s are quantised open and closed string fluxes, and the matrix Z takes the fac-

torised form (2.25). As before, the matrix R will only depend on the axionic components

of the 4d sugra fields, which in this more general setup are given by

ba , θ̂iα = Re Φi
α = baf ia α − θiα , ξK = ReNK = ξ′K − 1

2
ba
∑
α

HK
aα +

1

2
gKiαθ

i
α . (3.1)

In the absence of open string moduli. Let us first consider the case without open

string moduli, so the axions of the compactification reduce to ba, ξ′K and the potential

takes the form (2.39). Notice that the negative definite term Vloc is bilinear in the fluxes

m and hK , so one may easily incorporate it into the bilinear structure (2.15) if one keeps

– 14 –



J
H
E
P
0
9
(
2
0
1
8
)
0
1
8

the %’s as in (2.42) and takes

Z−1 = 8 eK


4

gab

4
9K

2gab
1
9K

2 2
3Kn

′I

2
3Kn

′J 4cIJ

 , (3.2)

or equivalently if one replaces (2.43) by

Z =
e−K

32


1

4gab
9
K2 g

ab

− 12
K2

2
KcIJn

′J

2
KcIJn

′I cIJ − 1
3cIKn

′KcJLn
′L

 . (3.3)

where we have used that cIJn
′In′J = 4. In other words, one can absorb the potential

piece Vloc into a modified metric for the 4d four-forms in the effective Lagrangian (2.13).

Notice that this new, modified metric is no longer definite positive, as needed to reflect

the fact that the contribution from Vloc can be negative. In addition, the new metric has

a non-trivial mixing between the four-forms in the RR and NS sector, which respectively

couple to metrics of the Kähler and complex structure sectors of the compactification. This

mixing seems to be a rather generic feature of massive type IIA string theory in Calabi-Yau

compactifications.

Finally, because through this modification the %’s in (2.15) remain unchanged, the

effective potential still displays the triple factorisation into saxions, axions and flux quanta.

More precisely in the basis of four-forms in the l.h.s. of (2.44), one again has that the %’s

are given by flux quanta as in (2.45) and that (2.46) is replaced by

Z = Rt M R (3.4)

with R again the axion-dependent rotation matrix in (2.44) and M the saxion-dependent

metric in the r.h.s. of (3.3).

In the presence of open string moduli. Let us now consider the presence of open

string moduli. As discussed above, this implies the shift of the closed string %’s as in (2.57)

and the appearance of the new term (2.54) contributing to the potential. Now, because this

extra term VDBI is also quadratic on closed- and open-string fluxes, one may easily rewrite

the full scalar potential in the form (2.15). Indeed, for simplicity let us consider the case

where open string moduli are present for a single D6-brane, so that we can suppress the

index α in the following, and that na i = 0. Then one may enlarge the vector of %’s (2.57)

to include the fluxes related to such D6-brane, as

%A = (ρ0 + υ0, ρa + υa, ρ̃
a + υ̃a, ρ̃, ρF i, ρK) (3.5)

where

lsρK = hK lsρF i = nF i −
1

2
gKi hK (3.6)
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and rewrite the full scalar potential (2.60) in the form (2.15), where now

Z−1 = 8 eK



4

gab

4
9K

2gab
1
9K

2 0 2
3Kn

′I

0 Gij 0
2
3Kn

′J 0 4cIJ


, (3.7)

whose inverse is given by

Z =
e−K

32


1

4gab
9
K2 g

ab

D

 (3.8)

with

D =

 1 0 0

0 δji 0

−K6 cIKn
′K 0 δJI


− 12

K2

4Gij
cIJ


 1 0 −K6 cIJn

′I

0 δji 0

0 0 δJI

 . (3.9)

Therefore we can again relate the scalar potential to an effective action of the

form (2.13). Notice however that the %’s in (3.5) not only depend on the axions of the

compactification but also on the D6-brane position moduli, which are typically seen as 4d

open string saxions. It is then a priori not clear whether the triple factorisation of the

potential into saxions, axions and fluxes holds for this case. Nevertheless, since one may

rewrite the vector (3.5) as

ls(ρ0 + υ0)

ls(ρa + υa)

ls(ρ̃
a + υ̃a)

lsρ̃

lsρF i
lsρK


= St−1Rt−1



e0

eb
mb

m

nF j
hL


(3.10)

where

R =



1 0 0 0 0 0

bb δba 0 0 0 0
1
2Kabcb

abc Kabcbc δab 0 0 0
1
3!Kabcb

abbbc 1
2Kabcb

bbc ba 1 0 0

θ̂j 0 0 0 δji 0

ξL 0 0 0 0 δLK


, S−1 =



1 0 0 0 0 0

0 δba 0 0 0 0

0 0 δab 0 0 0

0 0 0 1 0 0

0 f ja 0 0 δji 0

0 −1
2HL

a 0 0 −1
2g
L
i δLK


(3.11)

and θ̂iα and ξK are defined as in (3.1), one can again factorise the dependence of the

potential on the axionic and saxionic part of the moduli of the compactification.5 More

5In some cases like toroidal compactifications, the D6-brane position moduli can also take periodic

values, and one should in principle be able to describe them on equal footing with the axions of the theory.

We analyse this possibility in appendix C, where we show that the structure (3.10) precisely allows to

incorporate them in the rotation matrix R.
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precisely, one recovers the previous triple factorisation structure, with a particular basis of

four-forms in which the %’s are given by the quantised fluxes

ls%A = (e0, ea,m
a,m, nF i, hK) (3.12)

and the four-form metric is of the factorised form (3.4), where R is as in (3.11) and

M =
e−K

32
Tt



1

4gab
9
K2 g

ab

− 12
K2

4Gij
cIJ


T (3.13)

with

T =



1 0 0 0 0 0

0 δab 0 0 0 0

0 0 δba 0 0 0

0 − K12(HI
b − f ibgKi )cIJn

′J 0 1 − K12g
I
j cIJn

′J −K6 cLJn
′J

0 −f ib 0 0 δji 0

0 1
2HK

b −
1
2f

i
bg
K
i 0 0 1

2g
K
i δKL


. (3.14)

It would be very interesting to interpret the final saxion-dependent matrix M in terms of

flux compactifications of M-theory on G2 manifolds.

Let us turn to the case with several D6-branes with na i 6= 0. Then the natural choice

is to further extend the vector (3.5) to

%A = (ρ0 + υ0, ρa + υa, ρ̃
a + υ̃a, ρ̃, ραF i, ρK , ρ

α
na i) (3.15)

where α runs over the D6-brane with open string moduli and

lsρK = hK lsρ
α
F i = nαF i −

1

2
gKiαhK − banαa i lsρ

α
na i = nαa i (3.16)

With this extension the saxion-dependent metric giving the potential is given by

Z−1 = 8 eK



4

gab

4
9K

2gab
1
9K

2 0 2
3Kn

′I

0 Gijαβ 0
2
3Kn

′J 0 4cIJ

Gijαβt
atb


, (3.17)

with Gijαβ ≡ Gijα δαβ . In this case, interpreting Z−1 as the inverse of a four-form metric is

problematic, because the lowest blocks of this matrix are not invertible. Hence, naively
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one cannot convert this bilinear expression for the scalar potential to an effective action

the form (2.13).

Interestingly, one finds an analogous obstruction in the context of compactifications

with metric fluxes, like the twisted tori analysed in appendix D. There, starting from the

supergravity F-term potential, one only obtains an invertible matrix Z−1 after the Bianchi

identities between metric fluxes have been taken into account. Since in principle both Ḡ2

and nαa i can be interpreted as metric fluxes in an M-theory uplift of our setup [63], it is

tempting to speculate that a similar kind of constraint should be imposed before attempting

to invert (3.17). It would therefore be interesting to analyse the present setup from the

viewpoint of G2-manifold with metric fluxes, a task that we leave for future work.

Instead of delving on the details of inverting Z−1, let us describe how to reproduce

the previous factorised structure of the potential, now with the extended vector (3.15).

For simplicity we will again consider a single D6-brane, the extension to several of them

being trivial. As before, one may also reproduce the potential in terms of a vector of

integer entries

ls%A = (e0, ea,m
a,m, nF i, hK , na i) , (3.18)

which instead of (3.17) is contracted with the metric Z−1 = R−1M−1Rt−1. Here the axion

rotation matrix R takes the form

R =



1 0 0 0 0 0 0

bb δba 0 0 0 0 0
1
2Kabcb

abc Kabcbc δab 0 0 0 0
1
3!Kabcb

abbbc 1
2Kabcb

bbc ba 1 0 0 0

θ̂j 0 0 0 δji 0 0

ξL 0 0 0 0 δLK 0

θ̂iba θ̂iδba 0 0 baδji 0 δb ja i


, (3.19)

and the saxion-dependent matrix M−1 is

M−1 = 8eKT−1



4

gab

4
9K

2gab

−K2

3

Gij

4cIJ

Gijtatb


Tt−1 (3.20)

with

Tt−1 =



1 0 0 0 0 0 0

0 δab 0 0 f ib −
1
2HK

b 0

0 0 δba 0 0 0 Kabtcf ic +Kacf ictb

0 0 0 1 0 0 0

0 0 0 0 δji −
1
2g
K
i 0

0 0 0 K
6 cLJn

′J 0 δKL 0

0 0 0 0 0 0 δb ja i


, (3.21)
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Given this description for the flux potential in Calabi-Yau compactifications, one may

naturally wonder if the factorised bilinear structure also generalises to non-Calabi-Yau ge-

ometries. In appendix D we have worked out the case of toroidal orientifolds with metric

fluxes, and found that the factorised structure indeed holds if we extend the flux vector

with new entries %ai , %bij related to each additional metric flux. As mentioned before, we

do also find that the metric for this extended flux vector is a priori not invertible, but

that it becomes invertible once that the Bianchi identities for metric fluxes are imposed.

Presumably, an analogous constraint allows to invert the metric for the case of compacti-

fications with na i 6= 0. These observations strongly suggest that the interpretation of the

scalar potential in terms of four-forms can only be made after the whole set of Bianchi

identities have been taken into account. In this sense, it would be very interesting to see

if one can also generalise our results to compactification with more exotic non-geometric

fluxes [34, 35], and to reinterpret the structure of the potential analysed in [64, 65] in this

language. In particular, it would be interesting to further explore the connection between

the invertibility of the saxion-dependent matrix M and the Bianchi identities for these

classes of vacua, where implementing the latter is oftentimes subtle. Finally, such a bilin-

ear structure with factorised axion dependence also appears in the context of 4d N = 4

gauged supergravity [66, 67], so one could apply the intuition drawn from our results to

this case as well.

4 4d strings and Freed-Witten anomalies

As we have seen in the previous section, it is possible to understand the classical type IIA

scalar potential in terms of a 4d effective action of the form (2.13). Moreover one can

choose a basis of four-forms such that the ls%A are given by flux quanta and the four-form

metric Z is of the factorised form (3.4), with M purely saxion-dependent and R depending

on the axions and some topological numbers of the compactification manifold M6.

It turns out that both the topological data and the precise axion dependence contained

in R have a neat microscopic description in terms of the Freed-Witten anomalies developed

by branes in flux compactifications. In particular, in this section we will show that one can

reconstruct R in terms of the Freed-Witten anomalies of higher-dimensional branes that

look like strings upon compactification to 4d.

As discussed in [43], 4d strings developing a Freed-Witten anomaly due to an internal

background flux is a ubiquitous effect in type II orientifold compactifications. The anomaly

is cured by adding further branes ending on the anomalous one, which in 4d are seen as

domain walls ending on a string. Macroscopically, the presence of 4d domain-walls ending

on certain strings is not surprising whenever the axions charged under such strings enter

the scalar potential, and they are usually dubbed axionic domain-walls. Microscopically,

the number k of domain walls ending on a certain string depends on the topological details

of the FW anomaly of the latter, and render the K-theory charge of such domain walls

Zk-valued [43].

4.1 Reconstructing R

As we have seen, in type IIA flux compactifications the axions that enter the classical scalar

potential are given by (3.1). Let us first ignore the presence of D6-brane axions. Then we
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String Flux Domain wall Rank

type cycle type type cycle

NS5 [πa4 ] ∈ H4(M6,Z) F4 = ebω̃
b D2 −

∫
πa4
F4 = eb

NS5 [πa4 ] ∈ H4(M6,Z) F2 = mbωb D4 π2 ∈ P.D.[F2 ∧ ωa]
∫
π2
ωc = Kabcmb

NS5 [πa4 ] ∈ H4(M6,Z) F0 = m D6 [πa4 ] m

D4 [πK3 ] ∈ H3(M6,Z) H = hKβ
K D2 −

∫
πK3

H = hK

Table 1. 4d strings that develop Freed-Witten anomalies in type IIA flux compactifications,

together with the fluxes creating the anomaly and the domain walls curing it. The last column

shows the amount of domain walls in terms of flux quanta.

are left with the NS axions arising from B = baωa and the RR axions from C3 = ξ′KαK .

These axions are magnetically coupled to 4d strings which are NS5-branes wrapping four-

cycles and D4-branes wrapping three-cycles of M6, respectively. More precisely we have

the following correspondence

B-field axion ba ↔ NS5-brane wrapping πa4 ∈ P.D.[ωa]

RR-axion ξ′K ↔ D4-brane wrapping πK3 ∈ P.D.[αK ]

where P.D. stands for Poincaré dual.

In general, D-branes develop FW anomalies in the presence of H-flux and NS5-branes

in the presence of RR fluxes. The precise set of anomalies for the 4d strings above are

summarised in table 1, adapted from table 3 of [43]. The table also displays the kind of

domain walls that are necessary to cure each anomaly, the internal cycle that they wrap

and their multiplicity.

Interestingly, one can encode the information of table 1 in a set of square matrices.

Indeed, notice that each 4d string can be seen as a linear map sending a quantised flux

(the one creating the anomaly) to a 4d domain wall (the one curing the anomaly). Now,

since the space of 4d domain walls is in one-to-one correspondence with the set of 4d four-

forms that they couple to, and the latter is in one-to-one correspondence with the set of

internal fluxes, we end up having an endomorphism in the lattice of quantised fluxes. If we

represent the lattice of closed string fluxes by the vector ls%A = (e0, ea,m
a,m, hK) then we

can represent the endomorphisms for each of the above 4d strings as a set of square matrices

Pa =


0 ~δ ta 0 0 0

0 0 Kabc 0 0

0 0 0 ~δa 0

0 0 0 0 0

0 0 0 0 0

 , PK =


0 0 0 0 ~δ tK
0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 , (4.1)

with (~δa)
b = δa

b. Here Pa represents a NS5-brane wrapping the four-cycle class [πa4 ] =

P.D.[ωa] and PK a D4-brane wrapping the three-cycle class [πK3 ] = P.D.[αK ]. For instance,

Pa maps a 0-flux m to m units of two-form flux F2 along ωa. This is precisely the flux
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jump when crossing a 4d domain wall made of m D6-branes wrapping πa4 , which is the

brane content needed to cancel the corresponding FW anomaly.

Notice that the matrices Pa, PK are strictly upper triangular and therefore nilpotent,

and that they all commute with each other. Finally, one can easily check that

eφ
αPα = eb

aPa+ξ′KPK = Rt (4.2)

where φα = {ba, ξ′K} runs over all axions, and R is the rotation matrix in (2.44). There-

fore, we find that the axion dependence of the scalar potential is fully determined by

simple topological data of the compactification, namely by the FW anomalies developed

by 4d strings.

4.2 Discrete shift symmetries

Four-dimensional effective theories of the form (2.13), in which a set of axions couple to

a set of four-forms, display a set of exact discrete shift symmetries. In those symmetries

the shift of an axion by its period is compensated by a discrete shift of the four-form

expectation values (or in other words by a shift of the quantised background fluxes) such

that the scalar potential remains invariant. Since different choices of background fluxes

corresponds to different scalar potentials, the presence of such discrete symmetries entails a

potential structure with multiple identical branches, in which the action of a shift symmetry

involves the jump from one branch to another. The simplest example of this setup is the

minimal axion-four-form coupling considered in [14, 16] to realise chaotic inflation, which

results in the following quadratic potential

V =
1

2
(q −mφ)2 (4.3)

with φ an axion of unit period and q,m ∈ Z. Here q corresponds to a four-form flux that

labels the different branches of the potential, that are connected to each other by means

of the discrete shift symmetry

φ→ φ+ 1 , q → q +m. (4.4)

Such simple 4d axion-four-form axion is recovered in certain subsectors of F-term axion

monodromy models [17]. As pointed out in [19], in more general setups like the type IIA

flux compactifications at hand, the axion dependence of the potential is more involved

than in (4.3). This in turn translates into a more complicated multi-branched structure

and discrete shift symmetries than in (4.4) [19, 21].

It turns out that the expression (4.2) leads to a general description of the discrete shift

symmetries of the potential. Indeed, the scalar potential resulting from (2.15) and (3.4) is

of the form

V =
1

κ2
4

MAB

8
ρAρB (4.5)

– 21 –



J
H
E
P
0
9
(
2
0
1
8
)
0
1
8

where, in the absence of open string moduli, the ρA are the components of the follow-

ing vector

ls~ρ = Rt−1


e0

ea
ma

m

hK

 = Rt−1~q (4.6)

with qA ∈ Z and R as in (4.2). These ρA are precisely the axion polynomials identified

in [19], which are left invariant under the discrete shift symmetry of the effective theory.

In terms of (4.2) periodic shifts of the axions φλ corresponds to the transformation

Rt−1(φλ + kλ) = Rt−1(φλ) · e−kλPλ kλ ∈ Z (4.7)

where we have used that {Pα} are commuting matrices. The vector (4.6), and therefore

the potential V , remain invariant if we perform the simultaneous shift

~q 7→ ~q ′ = ek
λPλ ~q (4.8)

which we are always allowed to implement since ek
λPλ is a matrix of integers and so q′A ∈ Z.

The transformations (4.7) and (4.8) are the generalisation of the discrete shift symme-

try (4.4) to this more general setup.

The vector entries ρA can be seen as the basic building blocks of the potential. Indeed,

any flux dependence of the potential or any axion dependence which is not periodic must

come through a function of the ρA, or else it will not respect the underlying discrete shift

symmetry of the theory. This explains why the dimensional reduction of a two-derivative

action must yield an effective potential of the form (4.5). However, since the symmetry is

exact, the statement also applies when we consider arbitrary corrections to the potential.

As pointed out in [21] these symmetries must also leave invariant the superpotential of the

4d effective theory. In fact, as we will discuss in the next section, they allow to reconstruct

W from the ρA, and vice versa.

Further discrete symmetries. The bilinear form of the scalar potential (4.5) is also

useful in order to identify classical symmetries under transformations of fields and fluxes,

beyond the shift symmetries discussed above. In particular one may identify duality symme-

tries involving the saxions. Indeed, notice that the potential is invariant under orthogonal

O(N,Z) transformations

~ρ → O~ρ M → OMOt , (4.9)

where ~ρ = Rt−1~q is defined similarly to (4.6) and N is its number of entries. Consider in

particular the RR sector of the potential and the following transformation on ~ρ

(ρ0, ρa, ρ̃
a, ρ̃) → (ρ̃, ρ̃a, ρa, ρ0). (4.10)

This is a symmetry as long as we transform

K → 36

K
, gab → 16gab . (4.11)
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This is a duality symmetry which relates large and small volumes in the classical poten-

tial. Further choices for transformations of the flux-axion polynomials contained in ~ρ come

along with different duality actions on the saxion metrics and volumes. These symmetries

together with the shift symmetries belong to the full duality group of the compactifications.

In the case of toroidal compactifications one can explicitly verify that both types of sym-

metries correspond to the action of the modular duality groups. In particular, the above

volume-duality transformation corresponds to the action of the S modular generators of

the Kähler moduli group SL(2,Z)3. The RR fluxes transform like a (2, 2, 2) representation

of SL(2,Z)3 and the shift symmetries correspond to the action of the shift generators T in

these modular groups. This interesting structure is described in detail in appendix E.

4.3 Adding open strings

Let us now reinstate the presence of open string moduli and let us see how the previous

prescription to obtain the axion rotation matrix R generalises to this case. In general,

having open string moduli will not only increase the number of axions (i.e., the D6-brane

Wilson lines) and therefore of 4d strings of the compactification. It will also increase the

number of 4d domain walls. In order to classify the latter, recall that one can locally

describe the open string moduli space of the compactification in terms of a set of reference

special Lagrangian three-cycles {Π0
α} with no worldvolume flux on them and satisfying the

RR tadpole condition (2.2). Each three-cycle Π0
α is homotopic to the actual three-cycle Πα

where the D6-brane sits, and which corresponds to the point in open string moduli space

that we are looking at.

In this description, there are two new kinds of 4d domain walls. The first one is

made of a D6-brane stretched along the four-chain Cα4 such that ∂Cα4 = Πα −Π0
α, and that

connects the vacuum that corresponds with the reference D6-brane configuration {Π0
α}

with the one that corresponds with the actual configuration {Πα}. The second one is made

of D4-branes stretched along two-chains Cα i2 defined by ∂Cα i2 = γiα − γi 0α , where [γiα] is the

class of one-cycles Poincaré dual to the two-form class [ηi] in Πα, and γi 0α is its homotopic

relative in Π0
α. Having k of such domain walls corresponds to switching on nαF i = k units

of worldvolume flux on the D6-brane wrapping Πα.

Given this new set of 4d domain walls one may consider how they interact with the

previously discussed 4d strings. Instead of describing this interaction in terms of the Freed-

Witten anomaly, we will now do so in terms of the Hanany-Witten effect. More precisely,

we will use the fact that when an NS5-brane crosses a D(p+2)-brane, a Dp-brane extended

along the two and wrapping their common directions is created, see figure 1 for a cartoon

of the process. Since crossing a D-brane corresponds to switching on a background flux,

this brane creation effect is in one-to-one correspondence with the Freed-Witten anomaly

cancellation, as explained e.g. in appendix B of [43]. Therefore, we can use it to reconstruct

the generators Pα and the axion rotation matrix R.

Indeed, in our setup a HW brane creation effect will occur whenever a 4d string made

up of a NS5-brane wrapping a four-cycle πα4 crosses one of the above 4d domain walls made

up of D(p+2)-branes stretching along p-chains. If the three-cycle Πα contains a two-cycle

πi2 that is non-trivial in the bulk, that is if nαa i 6= 0, then an NS5-brane wrapping πa4 will
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NS5NS5 Dp’s

D(p+2)’s D(p+2)’s

Figure 1. Hanany-Witten effect [68]: when an NS5-brane crosses M D(p+2)-branes, M Dp-branes

will appear stretching between the two.

intersect Πα on the dual one-cycle γiα, and so the four-chain Cα4 along Cα i2 . Therefore, due

to the HW effect, when a 4d NS5-string crosses a 4d domain wall made up of a D6-brane

along Cα4 , then nαa i 4d domain walls made up of D4’s along Cα i2 are created. Finally, as

mentioned above the latter domain walls are dual to the worldvolume flux nαF i. In practice

all this implies that the entries of (2.57) must depend on the following combination of

axions and fluxes

nαF i − banαa i (4.12)

as is indeed the case. The same NS5-brane will also intersect Cα4 along Cα i2 if the chain

integral f ia α in (2.51) does not vanish. The intersection will now be along the two-cycle

πi2, whose decomposition in terms of bulk two-cycles is given by [πi2] = nαa i[π
a
2 ]. Therefore

when a 4d NS5-string crosses the same D6-domain wall, nαb if
i
a α D4-branes wrapping πb2

will be created. This implies that the following combination of axions and fluxes appears

in (2.57)

eb − nαb ibaf ia α → eb + nαb iθ̂
i
α (4.13)

where have promoted the combination baf ia α to the full open string axion θ̂iα. Finally, a

NS5-brane wrapping πa4 will intersect a D4-brane along Cα i2 if f ia α 6= 0. When such a 4d

NS5-string crosses the 4d D4-domain wall, D2-branes along 4d will be created, that is the

objects dual to the flux e0. this implies the following combination of axions and fluxes

in (2.57)

e0 − nαF ibaf ia α → e0 − nαF iθ̂iα (4.14)

where we have again completed the combination to include the full θ̂iα.

Putting all these result together, we obtain the generalisation of (4.2) that includes

open string domain walls and axions. First we define the flux vector

ls%A = (e0, ea,m
a,m, nαF i, hK , n

α
a i) . (4.15)

Here the entries nαF i are worldvolume fluxes whose corresponding 4d domain walls are D4-

branes wrapping Cα i2 . The 4d domain walls corresponding to the entries nαa i and pα′ are

more obscure, and are presumably related to those made up of D6-branes wrapping Cα4 .
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As pointed out in [17], the 4d four-form that corresponds to nαF i can be obtained from

dimensional reduction of the four-form A4 dual to the D6-brane gauge vector potential.

There is however no obvious description for the 4d four-forms that correspond to the last

two entries of (4.15) and it would be interesting to develop one. In particular, it would be

interesting to describe their interplay with the presence of RR two-form fluxes since then,

as mentioned before, one must satisfy the consistency condition manαa i, ∀α, i.
Acting on this flux vector, the FW and HW relations translate into the following

matrices

Pa =



0 ~δ ta 0 0 0 0 0

0 0 Kabc 0 0 0 0

0 0 0 ~δa 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 ∆a

0 0 0 0 0 0 0

0 0 0 0 0 0 0


PK =



0 0 0 0 0 ~δ tK 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


(4.16)

with (∆a)
j
k b = δbaδ

j
k, and

P α
i =



0 0 0 0 ~δ ti 0 0

0 0 0 0 0 0 ∆a

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0


, (4.17)

where the last set corresponds to the Wilson line axions θ̂iα. For simplicity we have con-

sidered the case of a single D6-brane with moduli. Exponentiating we arrive to the axion

rotation matrix

R =
(
eb
aPa+ξKPK+θ̂iαP

α
i

)t
=



1 0 0 0 0 0 0

ba δab 0 0 0 0 0
1
2Kabcb

bbc Kabcbc δba 0 0 0 0
1
3!Kabcb

abbbc 1
2Kbacb

abc bb 1 0 0 0

θ̂i 0 0 0 δij 0 0

ξK 0 0 0 0 δKL 0

θ̂iba θ̂iδba 0 0 baδji 0 δb ja i


(4.18)

that reproduces the results in section 3. Needless to say, the description of discrete shift

symmetries made in subsection 4.2 readily generalises to this more general case, with the

flux vector ~q replaced by (4.15) and the axion rotation matrix R by (4.18).

5 The superpotential and the master axion polynomial

As already mentioned, the discrete shift symmetries of section 4.2 are in fact discrete gauge

symmetries, and as such they must also be respected by the superpotential of the effective
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4d theory, which in the classical regime in which we are working is given by the polyno-

mial (2.61). Explicitly, we have that up to the constant piece W0 such polynomial reads

lsW = e0 − eaT a +
1

2
KabcmaT bT c −m1

6
KabcT aT bT c − hKNK − Φi

α(nαF i − nαa iT a) . (5.1)

One can check explicitly that the combination of axion plus flux shifts given by (4.7)

and (4.8) leaves this expression invariant, just like it leaves invariant the axion polynomials

defined by

ls~ρ = Rt−1~q = Rt−1



e0

ea
ma

m

nαF i
hK
nαa i


(5.2)

where R is given by (4.18). This already suggests that the axion polynomial vector ~ρ and

the superpotential above are intimately related. In fact, we will show that they contain

the same information, and there is a one-to-one dictionary between both.

Let us first show how to obtain the superpotential from ~ρ. For this, recall that in

general a flux superpotential can be written down as [69, 70]

lsW = Π t(ψ) · ~q (5.3)

where Π is a matrix of periods from where one can construct the tree-level Kähler potential,

with one entry normalised to the unity and the rest depending holomorphically on the

complex fields ψλ = φλ + isλ. In the case at hand we have

Π t = (1,−T a, 1

2
KabcT aT b,−

1

6
KabcT aT bT c,−Φi

α,−NK , nαa iT
aΦi

α) , (5.4)

although its precise form will not be essential in the following. Indeed, in general one can

rewrite the superpotential as

W = [R(φ)Π(ψ)] t · ~ρ , (5.5)

where we recall that R only depends on the axionic part φλ of each complex field ψλ.

Now, both W and ~ρ are invariant under the discrete shifts (4.7) and (4.8), so the product

R Π must be invariant as well. Because this product does not depend on the fluxes,6 this

means that it must be invariant under periodic axion shifts alone, so it can only depend

on the saxions sλ or on periodic terms of the form e2πiφλ . Finally, the latter are absent

whenever we neglect world-sheet and D-brane instanton contributions, so in this regime we

necessarily have that

R(φ)Π(ψ) = Π(s) ⇒ W = [Π(s)] t · ~ρ . (5.6)

6R does not depend on the fluxes by construction, and Π does not depend on the fluxes whenever the

Kähler potential does not depend either.
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Moreover, we can always express a holomorphic function as W (ψ) = e
isλ ∂

∂φλW (s = 0),

which applied to the above expression gives

W = e
isλ ∂

∂φλ
[
Π t(0) · ~ρ

]
. (5.7)

In general, Π(0) only contains one non-vanishing entry, the one that is normalised to unity.

Therefore, the product Π t(0) · ~ρ selects one of the axion polynomials contained in ~ρ, which

in the following we dub master axion polynomial and denote by ρ0. To sum up, we have

that the dictionary that takes us from ~ρ to W reads

W = e
isλ ∂

∂φλ ρ0 (5.8)

with ρ0 the particular component of ~ρ selected by Π(0). In the case at hand, such master

axion polynomial is nothing but the first entry in (5.2) and it reads

lsρ0 = e0 − baea +
1

2
Kabcmabbbc − m

6
Kabcbabbbc − hKξK − θ̂iα (nαF i − nαa iba) , (5.9)

from where it is obvious that (5.8) holds. This axion polynomial is associated to the four-

form F 0
4 defined in (2.17), that arises from the direct dimensional reduction of dC3 with all

indices in Minkowski. Notice that this 4-form is universal, compactification independent

and present in any Type IIA orientifold of the class here considered.

Let us now discuss how to derive ~ρ in (5.2) from W . Obviously, the entry given by

ρ0 is easily recovered from W by definition, since ρ0 ≡ W |s=0. Now, it turns out that we

can also recover the remaining components of ~ρ by taking successive derivatives of ρ0 with

respect to all the different axions that it depends on. Schematically, we have that all the

components of ~ρ are linear combination of the following axion polynomials

ρλ1...λn =
∂nρ0

∂φλ1 . . . ∂φλn
(5.10)

and vice versa. To see this let us first characterise all the entries of ~ρ as

ρA = ~δ tA · ~ρ = l−1
s
~δ tA ·Rt−1 · ~q = l−1

s
~δ tA · e−φ

λPλ · ~q (5.11)

where ~δA is a vector with the Ath entry equal to one and all the other vanishing, and

in particular we have that ~δt0 = (1, 0, 0, . . . ). Also, in the last equality we have used the

expression of R in terms of the nilpotent generators Pλ, as in (4.18). We then have that

∂λ1 . . . ∂λnρ0 = (−1)n~δ t0 · Pλ1 . . . Pλn · ~ρ = (−1)n
(
P tλ1 . . . P

t
λn
~δ0

)t
· ~ρ . (5.12)

Since the generators Pλ do not depend on axions or fluxes, one recovers linear combinations

of the axion polynomials in ~ρ, whose coefficients at most depend on the topological numbers

Kabc. Also, since the matrices P tλ are strictly lower triangular, their action lowers the

position of the non-vanishing entry of any vector ~δA. Finally, the different combinations of

generators acting on ~δ0 scan all possible entries of this vector, as one can check with the

expressions (4.16) and (4.17).
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For completeness, let us show explicitly how these axion polynomials are obtained. By

successive derivation we find

ls
∂ρ0

∂ba
= −ea +Kabcmbbc − m

2
Kabcbbbc + nαa iθ̂

i = −lsρa,

ls
∂2ρ0

∂ba∂bb
= Kabc (mc −mbc) = lsKabcρ̃c,

∂3ρ0

∂ba∂bb∂bc
= −Kabcm = −Kabcρm,

ls
∂ρ0

∂θ̂iα
= −nαF i + nαa ib

a = −lsρF iα ,

ls
∂ρ0

∂ξK
= −hK = −lsρK ,

ls
∂2ρ0

∂ba∂θ̂iα
= nαa i = lsρnαa i .

(5.13)

To summarise, one may consider the master axion polynomial ρ0 as the generator of

all other axion polynomials associated to all possible Minkowski 4-forms. As a consequence

of this and the results of section 3, the scalar potential can be written in the general form

V = Gλ1...λnµ1...µn

(
∂ρ0

∂φλ1 . . . ∂φλn

)(
∂ρ0

∂φµ1 . . . ∂φµn

)
(5.14)

with G encoding all the saxion-dependent geometric data, and ρ0 all the information about

axions and fluxes. Since ρ0 keeps the information about the rest of the ρA’s, one can

consider this formulation as an alternative recipe to the Cremmer et al. potential, computed

in terms of the Kähler potential and the superpotential. Here the full scalar potential

may be constructed in terms of the matrix of metrics M and ρ0. In the first formulation

supersymmetry is explicit whereas in the second it is not but, as follows from the discussion

of the last section, the duality symmetries (like shift symmetries) are more transparent.

6 4-forms and sugra auxiliary fields

Since 4-forms do not propagate, it is interesting to investigate the possible connection

between them and the moduli auxiliary fields of the minimal 4d N = 1 sugra formulation.

In the closed string sector, the off-shell action includes 2(h+
11 + h+

21 + 1) real auxiliary

scalars, corresponding to one complex field per modulus. To those one has to add two

more from the supergravity multiplet. On the other hand there are 2(h+
11 + 1) RR 4-forms

and (h+
21 + 1) NS ones. If open string moduli are added, there is one complex auxiliary

field per D6-brane, whereas b1(Π0
α) additional 4-forms per brane appear. It is clear that

the most naive expectation of a matching between sugra scalar auxiliary fields and 4-forms

does not work, at least for Type IIA orientifolds. Still, it is interesting to express the sugra

auxiliary fields in terms of the ρ polynomials given by eq. (5.10). Hopefully this may give

us hints about a possible new off-shell formulation with 4-forms acting as auxiliary fields

(notice that, using eq. (2.14) it is straightforward to obtain the expressions in terms of the

4-forms from those in terms of the ρ’s) .
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The minimal N = 1 supergravity F-term auxiliary fields are given by

F
β̄

= e
K
2 K β̄αDαW . (6.1)

Decomposing them as ψa = φα + isα one can evaluate them by computing

∂αW =
1

2
(∂φα − i∂sα)

[
e
isβ∂

φβ ρ0

]
= e

isβ∂
φβ ∂φαρ0 = e

isβ∂
φβ ρα , (6.2)

where we have used the expression (5.8). Using

K β̄αKα = 2isα , (6.3)

one finally obtains

F
β̄

= e
K
2 eis

γ∂φγ
[
K β̄αρα + 2isβρ0

]
, (6.4)

for all the auxiliary fields. Let us be more explicit and provide the detailed dependence on

each of the different ρ-polynomials.

In the absence of open string moduli. Let us first restrict ourselves to closed string

moduli in the presence of RR and NS fluxes. In this case, the Kähler potential can be

separated in two pieces in the following way:

K = KK(ta) +KQ(n
′K), (6.5)

where the first term only depends on the Kähler moduli and is given by the expression (2.27)

and the second on the complex structure and is shown in eq. (2.29). From this Kähler

potential we can obtain the metric in the Kähler moduli space and its inverse as [55, 71]

Kab̄ = − 3

2K

(
Kab −

3

2

KaKb
K

)
; Kab̄ = −2K

3

(
Kab − 3tatb

K

)
, (6.6)

where we have defined the following contractions of the triple intersection numbers with

the imaginary parts of the Kähler moduli

Kab = Kabctc, Ka = Kabctbtc, (6.7)

with Kab being the inverse of Kab. Notice that, due to this separation in the Kähler

potential, each piece separately satisfies a no-scale type condition, that is

KaK
ab̄Kb̄ = 3 , KIK

IJ̄KJ̄ = 4 . (6.8)

By applying eq. (5.6) one finds

W = ρ0 −
1

2
Kaρ̃a − i

[
taρa − n

′IρhI +
K
6
ρm

]
, (6.9)
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and it may be easily checked that this agrees with eqs. (2.30) and (2.40), that is, the

RR+NS flux superpotential [55]. The auxiliary fields can then be computed yielding

F̄ T
a

= eK/2
{[(

2tatb −K āb
)
ρb + 2tan′IρI +

(
1

2
K ābKb −

1

3
taK

)
ρm

]
+i
[
2taρ0 +

(
K ābKbc − taKc

)
ρ̃c
]}

(6.10)

= eK/2
{[

2

3
KKabρb + 2tan′IρI +

1

3
Ktaρm

]
+ i

[
2taρ0 +

(
taKc −

2

3
Kδac

)
ρ̃c
]}

,

(6.11)

F̄N
I

= eK/2
{[(

2n′In′J −K ĪJ
)
ρJ + 2n′Itaρa −

1

3
n′IKρm

]
+ i
[
2n′Iρ0 − n′IKaρ̃a

]}
.

(6.12)

where in the second line of F̄ T
a

we have expressed the inverse Kähler metric as in eq. (6.6).

In addition, we have used K ābKb = 2ita and K ĪJKJ = 2in′I , which is only valid thanks

to the block diagonal form of the Kähler metric coming from the fact t hat n′I in eq. (6.5)

is the field that enters the holomorphic variable N I (i.e. n′I = nI = ImN I), as opposed

to the case in which open strings are taken into account. As a remark, in the absence of

NS fluxes, there is a one to one correspondence between 4-forms and sugra auxiliary fields.

This is the case treated in [24, 25] and, as expected, our expressions for the auxiliary fields

F T
a

and W match the ones in there after performing the corresponding substitutions in

the 4-forms and Kähler metric.

However, a point to consider in the more general case with NS fluxes is that the

imaginary part of all the complex structure auxiliary fields Im FN
I

is the same for all the

fields (modulo the metrics) and is directly given by the real part of the superpotential. This

is in agreement with the fact that the number of NS 4-forms is half the number of complex

structure fields, and hence there should be half the number of independent auxiliary fields.

An interesting question is how this structure changes in the presence of additional

closed string fluxes. One could conceive that the presence of extra e.g. NS fluxes could

lead to a match of sugra auxiliary fields and 4-forms or some modification of the bilinear

structure that we have found. This does not seem to be the case. As an example we have

worked out in appendix D a toroidal Type IIA Z2×Z2 orientifold example in the presence

of additional NS metric fluxes, beyond the standard RR and NS ones. The structure we

have found in the above sections goes through with the addition of new 4-forms associated

to the metric fluxes. In this case the total number of 4-forms is larger than the number of

complex structure fields and no matching seems possible. As already pointed out in [19],

this suggests the necessity of a N = 1 sugra formulation in which the 4-forms are contained

as auxiliary fields of new N = 1 multiplets. This has recently been explored in [24, 25] .

Finally, recall that the scalar potential cam be written in terms of the auxiliary fields

and the superpotential as

V = F T
a
Kab̄F

T ∗b + F u
I
KIJ̄F

u∗J − 3eK |W |2 , (6.13)
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so substituting (6.10))-(6.12) and using (6.8) we get the general expression for the scalar

potential as a function of the ρ’s and the derivatives of the Kähler potential

V = eK
[
4ρ2

0 + gabρaρb +
4

9
K2gabρ̃

aρ̃b +
1

9
K2ρ2

m +KLJρhLρhJ +
1

3
Kn′LρhLρm

]
. (6.14)

The interest of an expression like this is that the dependence on the axions of the system

is encapsulated inside the ρ polynomials. The invariance of the potential under the mon-

odromy shift symmetries is explicit, since the ρ polynomials are invariant. It also facilitates

the study of the extrema of the potential with respect to the axions. For example, we know

that only ρ0 depends on the axions of the complex structure ξI . Thus minimising with

respect to them one finds immediately the condition ρ0 = 0 at the extrema, so that a linear

combination of axions is fixed at the minima. It would be interesting to study minima of

this kind of potentials in the presence of open string fields, as discussed in the previous

sections. We leave this task for future work.

In the presence of open string moduli. The same exercise of relating the 4d N = 1

sugra auxiliary fields with the ρ’s (or the 4-forms) can be performed in the presence of open

string moduli and the corresponding fluxes. In this case, the Kähler metric is not block

diagonal due to the redefinition of the holomorphic variables explained in section 2.2 (see

appendix B.2 for more details on the Kähler metrics) and the computation of the auxiliary

fields becomes more cumbersome. The expression (6.8) no longer separates into two pieces

and is replaced by

Kαβ̄KαKβ̄ = 7. (6.15)

We can use eq. (5.8) again to obtain the superpotential as a function of the ρ’s, which reads

W = ρ0 − itaρa − inIρI − itaf iaρF i −
1

2
Kaρ̃a −

1

2
na it

atbf ib +
i

6
Kρm (6.16)

Once more, one can check that this superpotential is the same as the one given by eq. (2.61).

With this expression plus the inverse Kähler metric given by eqs. (B.19)–(B.25), the aux-

iliary fields can be computed and they have the following form:

F̄ T
a

= eK/2
{
i
[
2taρ0 +

(
K ābKbc − taKc

)
ρ̃c + f ic

(
K ābtc −K āctb − tatbtc

)
nb i

]
+

[(
2tatb −K āb

)
ρb +

(
1

2
K ācHI

c + 2tanI
)
ρI

+
(

2tatbf ib + f icK
c̄a
)
ρF i +

(
1

2
K ābKb −

1

3
ta
)
ρm

]}
, (6.17)

F̄N
I

= eK/2
{
i

[
2n
′Iρ0 −

(
1

2
K d̄aHI

dKac + nIKc
)
ρ̃c − f idtd

(
1

2
K c̄aHI

c + nIta
)
na i

]
+

[(
1

2
K c̄aHI

c + 2nIta
)
ρa +

(
K ĪJ + 2nInJ

)
ρJ

+

(
1

2
DljgIl +K c̄df jdH

I
c + 2taf ian

I

)
ρF j −

(
1

2
K c̄aHI

cKa +
K
3
nI
)
ρm

]}
,

(6.18)

– 31 –



J
H
E
P
0
9
(
2
0
1
8
)
0
1
8

F̄Φi = eK/2
{
i
[
2taf iaρ0 −

(
f idK

d̄aKac + taf iaKc
)
ρ̃c

+
(
Dijta +K d̄bf idf

j
b t
a − f icK c̄atdf jd

)
na j
]

+

[(
f icK

c̄a + 2tatbf ib

)
ρa +

(
1

2
DligJl +

1

2
K c̄df idH

J
c + 2tdf idn

J

)
ρJ

+
(

2taf iat
df jd −D

ij −K ābf iaf
j
b

)
ρF j −

(
1

2
f icK

c̄a +
K
3
taf ia

)
ρm

]}
, (6.19)

where the K ĪJ in the expression for F̄N
I

is given by eq. (B.25). As in the previous case,

the scalar potential can be expressed in terms of the auxiliary fields and it is computed in

appendix B.3.

7 Outlook

In this paper we have analysed the scalar potential of flux compactifications from a dif-

ferent perspective, that makes manifest the discrete shift symmetries involving fluxes and

periodic scalars such as axions. We have focused our analysis in 4d type IIA Calabi-Yau

orientifold compactifications with RR and NS fluxes and D6-branes, for which we have com-

puted the full scalar potential at tree-level and in the large volume regime. This class of

compactifications is particularly interesting for our purposes, because each complex scalar

ψλ = φλ+ isλ entering the potential consists of a periodic scalar φλ, which in above regime

is an axion, and a saxionic partner sλ. Moreover, as pointed out in [19, 21] the 4d effective

theory of these vacua can to great extent be understood in terms of couplings of axions

to four-forms, which in turn makes manifest the discrete shift symmetries of the potential

and its multi-branched structure.

In the present work we have extended the analysis of [19, 21], by considering the

F-term scalar potential that results from combining the presence of RR and NS fluxes

and localised sources like D6-branes and O6-planes, and that involves both closed- and

open-string axions. As shown in appendix A, an important part of the potential can

be computed by considering the three-form fields CA3 that appear in 4d, computing the

couplings of scalars to their four-form field strengths FA4 and then dualising the latter. By

construction, this piece of the potential is of the form

V = ZAB%A%B (7.1)

where ZAB is the inverse metric of the four-forms, and %A the different combination of

scalars coupling to each of them. One also finds that each of the entries of ~% is linear in the

quantised fluxes of the compactification, and therefore the potential is quadratic in them.

This is probably not so surprising, given that we are obtaining this piece of the potential by

dimensionally reducing a two-derivative 10d action. What it is perhaps more remarkable is

that one can manage to write the full F-term scalar potential in the form (7.1), including

the contribution from localised sources. Again, one finds that each of the entries %A is linear

in the different RR and NS fluxes and discrete D-brane data. Therefore, one may postulate

a 4d effective theory describing the scalar potential purely in terms of 4d four-forms.
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Given the same potential, the specific form of Z and ~% in (7.1) depends on the basis of

4d four-forms that one considers. In general we find that there is always a particular basis

in where %A = qA, with ~q the vector of quantised fluxes of the theory. In this description,

the full potential is encoded in the kinetic terms Z of the four-forms, and the flux quanta

appear as integration constants of their dualisation, as in [24, 25]. There is however an

alternative, more interesting choice in which ~% equals

~ρ = Rt−1~q (7.2)

where ~q is the previous vector of flux quanta and R(φ) a rotation matrix that only depends

on the axionic components φλ of the scalars fields and topological data. All the dependence

on the saxions sλ is kept in the metric for this choice of four-forms. One then finds

a interesting factorisation of the scalar potential in terms of its dependence on axions,

saxions and fluxes, namely

V = ~q t
(
Rt M R

)−1
~q (7.3)

with R only depending on the axions φλ and M only on the saxions sλ.7 In fact, one can

be more precise, and write the axion rotation matrix R as

Rt = eφ
λPλ (7.4)

with the generators Pλ integer-valued, nilpotent matrices that only depend on the topo-

logical data of the compactification. More precisely, one constructs Pλ by considering the

4d string that is associated with the axion φλ and looking at how it interacts with the 4d

domain walls of the effective theory: when the 4d string crosses a certain domain wall, a

second domain wall may need to appear stretching between the two. At the microscopic

level, this rules are encoded in the Freed-Witten and Hanany-Witten effects between the

different branes of the compactification that appear as 4d defects.

Since the FW and HW effects are ultimately related to gauge invariance, one may

interpret the two previous choices of basis, leading to %A = qA vs. %A = ρA, in terms

of a well-known effect in 10d supergravity [72]. Indeed, in general one may describe the

notion of charge in terms of quantised, non-gauge invariant quantities (the qA) or in terms

of non-quantised, gauge invariant quantities (the ρA). The higher dimensional gauge trans-

formations correspond in the effective 4d theory in the combined discrete shifts of axions

and fluxes that leave invariant the ρA but not the qA. As the ρA are basic invariants of this

discrete shift symmetry, any 4d quantity that depends on the fluxes must do it as a function

of the ρA, or else it would result into a violation of a microscopic gauge invariance. This

applies, in particular, to the corrections to the scalar potential of any sort. Notice that

this generalises in a very concrete way the protection mechanism used in [14] to propose

models of large field inflation.

The gauge invariance of ~ρ is also manifest in its close relationship to another gauge

invariant quantity, the flux superpotential W . Neglecting contributions from world-sheet

7To be precise, this factorisation only holds when φλ have unit period. When normalised canonically

the factorisation will be generically lost.
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and D-brane instantons, this superpotential is a polynomial on the complex fields ψλ,

whose coefficients are given by the quantised fluxes and the topological compactification

data. We find that ~ρ and W contain the same information, and one can build a dictionary

between the two quantities. More precisely, there is one of the components of ~ρ, dubbed

master axion polynomial ρ0, that becomes W upon the replacement φλ → ψλ. In addition

one can recover all the other components of ~ρ by taking all the possible derivatives with

respect to the axions present in ρ0, completing the correspondence ~ρ ↔ W . As a result

one may give concrete expression for the standard N = 1 auxiliary fields in terms of the

ρA and the saxion-dependent metrics contained in M.

Notice that most of our results can be purely formulated in 4d language, and as such

one could hope to extend them to other classes of string compactifications. Indeed, to

obtain the key element of our analysis, the vector ~ρ, one just needs to know the spectrum

of 4d domain walls and string defects plus their interactions. This topological information

is typically much easier to extract than performing the full dimensional reduction. Revers-

ing the logic, one may reinterpret the scalar potentials already present in the literature in

terms of gauge invariant quantities like ~ρ and from there the physics of strings and do-

main walls in the 4d effective theory. One interesting generalisation would be to consider

type IIA backgrounds with metric fluxes and D-branes, which give more general superpo-

tentials [73], or compactifications that do not have a standard geometric interpretation,

see e.g. [34, 35, 64, 65]. In this context, it would be particularly interesting to develop

the connection that we have found in appendix D between the invertibility of the bilinear

form of the potential and the implementation of the Bianchi identities for the background

fluxes. In general, a relation between the two is to be expected, since the Bianchi identities

constrain the naive lattice of flux quanta to the subset of those that correspond to truly in-

dependent fluxes. As the effective Lagrangian (2.13) describes independent 4d four-forms,

it seems reasonable that one has to restrict the lattice of fluxes to independent ones before

attempting to translate their effect in the potential into a Lagrangian of this form, that is,

before attempting to invert the bilinear form ZAB. We find quite amusing that consistency

conditions of the microscopic theory such as Bianchi identities are encoded in this manner

in the structure of the scalar potential, and it would be interesting to use this property to

improve our understanding of non-geometric compactifications. In some cases, the correct

application of Bianchi identities in this class of compactifications can be rather subtle and

have no clear prescription, so demanding that the F-term potential can be obtained from

a four-form Lagrangian could set a criterium to implement them.

In any event, it would be interesting to generalise our result, perhaps in combination

with those in [24, 25], to give a complete, model-independent description of the 4d four-form

Lagrangian and the related scalar potential. In addition, it would be interesting to sharpen

the dictionary that relates the couplings in the former to the standard N = 1 quantities

K and W . This would in particular allow to reformulate the more developed type IIB

scenarios of moduli stabilisation from the vantage point of 4d four-form Lagrangians and,

as mentioned in the introduction, to connect with the proposal of Bousso and Polchinski [1].

Finally, this alternative description of the scalar potential may be useful in understand-

ing the structure of vacua in flux compactifications. In particular, the bilinear form of the
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potential could be used to reanalyse the set of supersymmetric and non-supersymmetric

vacua found in the type IIA flux literature, see e.g. [31–35, 74–76]. Moreover, most of the

search for vacua has neglected the presence of open strings fields in the scalar potential,

while in our approach they appear on equal footing with the closed string fields. One could

then incorporate open strings in the analysis of type IIA moduli stabilisation to construct

new and more general classes of vacua. At any rate, we find remarkable that something as

intricate as an F-term scalar potential can have a general factorised dependence between

axions and saxions, and that such factorisation is ultimately due to the consistency condi-

tions of the microscopic underlying theory. Hopefully, developments along these lines will

give us a better idea of the class of scalar potentials that one may obtain out of string

compactifications, and eventually a better characterisation of the String Landscape.
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A Dimensional reduction and 4d four-forms

In this appendix we compute the 4d scalar potential from the dimensional reduction of

the massive type IIA 10d supergravity Lagrangian, in the presence of fluxes and localised

sources. We will do so by obtaining a 4d effective four-form Lagrangian (2.13) from the

democratic action of [58], along the lines of appendix B of [21]. We will extend the compu-

tation therein by adding the necessary ingredients for the discussion of section 2, like the

simultaneous presence of D-branes and NS fluxes. To streamline the presentation we will

divide the computation into two, first focusing on the contribution coming from the closed

string sector and adding afterwards the open string sector.

A.1 Closed string sector

Let us first compute the closed string sector contribution to the 4d Lagrangian (2.13).

Following the structure of section 2 we will first do so in the C-basis, then in the A-basis

and then add the contribution of the NS sector.

The C-basis. To perform the dimensional reduction of the closed string flux sector one

needs to consider the terms in the action (2.7) that involve the RR G2n and NSNS H

field strengths. We will first focus on the former, supplying the action with the Lagrange

multiplier terms to enforce the adequate Bianchi identities in the C-basis

SRR = − 1

4κ2
10

∫ [
1

2
G ∧ ?10 G− σ′(C) ∧ (dG−H ∧G)

]
top

, (A.1)
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where we have used the polyform notation of eqs. (2.8) and (2.9), σ′ reverses the indices of

a p-form and top indicates that we extract the 10-form from the wedge product. Defining

the flux quanta as in (2.11) and (2.31), a solution to the Bianchi identities is

G0 = l−1
s m,

G2 = l−1
s (bam−ma)ωa + . . . ,

G4 = l−1
s

[
ea −Kabcmbbc +

m

2
Kabcbbbc

]
ω̃a + F 0

4 + dξ′K ∧ αK + . . . ,

G6 = l−1
s

[
−e0 + eab

a − 1

2
Kabcmabbbc +

m

3!
Kabcbabbbc + ξ′KhK

]
ω6 + F a4 ∧ ωa

+
[
dΞK + hKc

0
3

]
∧ βK + . . .

G8 = F̃4 a ∧ ω̃a ,

G10 = F̃4 ∧ ω6 , (A.2)

where we have used the basis of quantised harmonic p-forms {ωa, ω̃a, ω6, αK , β
K} and the

definition for the closed string axions {ba, ξ′K} of section 2. As in there, we have defined

the 4d RR three-forms in the C-basis as

C3 = c0
3 + . . . C5 = ca3 ∧ ωa + . . . C7 = d̃3 a ∧ ω̃a + . . . C9 = d̃3 ∧ ω6 + . . . (A.3)

and the corresponding four-form field strengths by

F 0
4 = dc0

3 , F a4 = dca3 − dba ∧ c0
3 ,

F̃4 a = dd̃3 a −Kabcdbb ∧ cc3 , F̃4 = dd̃3 − dba ∧ d̃3 a . (A.4)

Moreover ΞK stand for the magnetic duals of the axions ξ′K , which appear in the dimen-

sional reduction of the RR potential C5 as follows

C5 = ΞK ∧ βK + . . . . (A.5)

Finally, the dots stand for non-closed, co-closed pieces of the background fluxes, that

appear due to the presence of localised sources and non-vanishing m and H. Such pieces

do contribute to the potential when plugged into the first term of the 10d Lagrangian (A.1),

but they essentially correspond to the backreaction of localised sources. Because of that,

their contribution is already taken into account by the potential terms VDBI and Vloc defined

in section 2, and will not be considered in the following.8

Plugging these expressions into (A.2) and integrating over the compactification mani-

foldM6 we will recover a 4d action with the structure (2.13). The first two terms in (2.13)

will come from the kinetic terms of the RR field strengths and the last term coming from

8It is possible to see [77] that the dH non-closed pieces give contributions localised at the sources, and

that in supersymmetric vacua these contributions coincide with the DBI potential energy.
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the Lagrange multipliers. More precisely, from the reduction of the kinetic terms we obtain

SRR,k = − 1

16κ2
4

∫
R1,3

[
4e

5φ
2

V6
ρ̃2 +

16e
5φ
2

V6
gabρ̃

aρ̃b +
e−

φ
2

V 3
6

gabρaρb +
4e−

φ
2

V 3
6

ρ2
0

]
∗4 1

+
V6e
− 5φ

2

4
F̃4 ∧ ∗4 F̃4 +

V6e
− 5φ

2

16
gabF̃4 a ∧ ∗4 F̃4 b

+ V 3
6 e

φ
2 gabF

a
4 ∧ ∗4 F b4 +

V 3
6 e

φ
2

4
F 0

4 ∧ ∗4 F 0
4

+ 2cKLdξ
K ∧ ∗4 dξL +

1

2
cKL

[
dΞK + hKC

0
3

]
∧ ∗4

[
dΞL + hLC

0
3

]
. (A.6)

with the definition of the ρA given in (2.19). Here φ is the 10d dilaton and V6 the volume of

M6 in string units and 10d Einstein frame (obtained via the replacement gMN → e
φ
2 gMN ),

where also the different p-form metrics are computed

gab =
e−φ

4V6l6s

∫
M6

ωa ∧ ?6ωb gab =
4V6

e−φl6s

∫
M6

ω̃a ∧ ?6ω̃
b (A.7)

with cIJ given by (2.35). Also, the result is obtained after performing the 4d Weyl rescal-

ing gµν → gµν
V6/2

and integrating over the orientifold quotient space. Finally, using the

relations (2.22) and K = 6e3φ/2V6 one finds

SRR,k = − 1

16κ2
4

∫
R1,3

32eK
[
K2

36
ρ̃2 +

K2

9
gabρ̃

aρ̃b +
gab

4
ρaρb + ρ2

0

]
∗4 1

− 1

16κ2
4

∫
R1,3

1

32eK

[
36

K2
F̃4 ∧ ∗4 F̃4 +

9

K2
gabF̃4 a ∧ ∗4 F̃4 b

+ 4gabF
a
4 ∧ ∗4 F b4 + F 0

4 ∧ ∗4 F 0
4

]
− 1

16κ2
4

∫
R1,3

2cKLdξ
′K ∧ ∗4 dξ′L +

1

2
cKL

[
dΞK + hKc

0
3

]
∧ ∗4

[
dΞL + hLc

0
3

]
. (A.8)

It is easy to see that the first two lines correspond to the first two terms of (2.13) with the

metric corresponding to (2.20).

To perform the dimensional reduction of the Lagrange multipliers notice that up to

boundary terms

− σ′(C) ∧ dHG ' σ′(dHC) ∧G = σ′(dHC) ∧ eB ∧ Ḡ = −dHC ∧ e−B ∧ σ′(Ḡ) (A.9)

where dH = d−H∧ and we have used (2.9) and the fact that σ′(P)∧P|top ≡ 0 for an even

polyform P in 10d. Integrating over the quotient space then gives

SRR,L =
1

8κ2
4

∫
R1,3

F̃4 ρ̃+ F̃4 a ρ̃
a + F a4 ρa + F 0

4 ρ0 , (A.10)

reproducing the last term in (2.13).

In fact, the second equality in (A.9) is not entirely correct, because it assumes that

the RR potential polyform C in the Lagrange multipliers and the one contained in G are
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identical. However, as discussed in [78], in order to be able to dualise the 4d two-forms

ΞK into the axions ξ′K the former should not appear in the Lagrange multipliers, while

they do appear in (A.2). This mismatch gives an extra term in the above reduction, which

finally translates into

SRR,L =
1

8κ2
4

∫
R1,3

F̃4 ρ̃+ F̃4 a ρ̃
a + F a4 ρa + F 0

4 ρ0 + dξ′K ∧
[
dΞK + hKc

0
3

]
. (A.11)

Notice that (2.12) and (A.2) will imply the following 4d duality relation

dΞK + hKc
0
3 = −2cKL ∗4 dξ′L . (A.12)

Eliminating the two-forms ΞK by imposing this relation, the last line in (A.8) will vanish

and the last term in (A.10) will transform into the kinetic term for the RR-axions ξ′K .

The A-basis. For completeness, let us redo the computation in the A-basis, following

more closely appendix B of [21].9 Here the relevant piece of the 10d action reads

SRR = − 1

4κ2
10

∫ [
1

2
G ∧ ?10 G− σ′(A) ∧ d

(
e−B ∧G

)]
top

. (A.13)

In this basis 4d three-forms are defined as

a0
3 = c0

3, aa3 = ca3 − bac0
3, ã4 a = d̃3 a −Kabcbbcc3, ã3 = d̃3 − bad̃3 a , (A.14)

and the corresponding field strength four-forms as

D0
4 = da0

3 , Da
4 = daa3 , D̃4 a = dã3 a , D̃4 = dã3 , (A.15)

which are related to the four-forms (A.4) by the rotation (2.24). In terms of them, the

solution to the Bianchi identities is

G0 = l−1
s m,

G2 = l−1
s (bam−ma)ωa + . . .

G4 = l−1
s

[
ea −Kabcmbbc +

m

2
Kabcbbbc

]
ω̃a +D0

4 + dξ′K ∧ αK + . . .

G6 = l−1
s

[
−e0 + eab

a − 1

2
Kabcmabbbc +

m

3!
Kabcbabbbc + ξ′KhK

]
ω6

+ (Da
4 + baD0

4) ∧ ωa +
[
dΞK + hKc

0
3

]
∧ βK + . . .

G8 =

[
D̃4 a +KabcbbDc

4 +
1

2
KabcbbbcD0

4

]
∧ ω̃a ,

G10 =

[
D̃4 + D̃4 ab

a +
1

2
KabcbabbDc

4 +
1

3!
KabcbabbbcD0

4

]
∧ ω6 . (A.16)

9Notice that the definition of flux quanta made in (2.11) differ from those in [21] by some signs.
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When plugged into the 10d RR kinetic terms, one again obtains the result (A.8), but now

written in terms of the four-forms (A.15). As discussed in section 2, this translates into the

first two terms of (2.11) with EA4 = (D0
4, D

a
4 , D̃4 a, D̃4), ls%A = (e0, ea,m

a,m) and the four-

form metric given by (2.25). To evaluate the contribution from the Lagrange multipliers

one notices that

− σ′(A) ∧ d
(
e−B ∧G

)
' σ′(dA) ∧ e−B ∧G = σ′(dA) ∧ Ḡ = −dA ∧ σ′(Ḡ) (A.17)

that translates into

SRR,L =
1

8κ2
4ls

∫
R1,3

D̃4m+ D̃4 am
a +Da

4 ea +D0
4

[
e0 − hKξ′K

]
. (A.18)

Again, taking into account the absence of 4d two-forms in the Lagrange multipliers will

give the extra term dξ′K ∧
[
dΞK + hKc

0
3

]
, and eliminating the two-forms ΞK in favour of

their axions ξ′K gives the same result as before.

The NS sector. The treatment of the NSNS flux sector is quite similar to the discussion

carried above. In 10d we have the action

SNSNS = − 1

4κ2
10

∫
1

2
e−2φH ∧ ?H +

1

2
e2φH7 ∧ ?H7 +H ∧H7 . (A.19)

The ansatz for the dimensional reduction in this case is

H = l−1
s hKβ

K , H7 = HK
4 ∧ αK , (A.20)

and the resulting action in 4d is

SNSNS = − 1

16κ2
4

∫
R1,3

32eK

l2s
cKLhKhL ∗4 1 +

e−K

32
cKLH

K
4 ∧ ∗4HL

4 +
1

8lsκ2
4

∫
R1,3

HK
4 hK ,

(A.21)

where the 4d four-form metric cKL is given by (2.35). Added to the contribution from

the RR sector in the C-basis, it reproduces a 4d Lagrangian of the form (2.11) with the

choices (2.41)–(2.43).

A.2 Open string sector

The presence of D-branes and O-planes modifies the above computation in a two-fold

manner. On the one hand, they act as sources for the RR field strengths and modify G

through their backreaction. On the other hand, they contribute to the axion-four-form

couplings through their Chern-Simons action.

In the case of D6-branes the sum of Chern-Simons actions reads

SCS = −
∑
α

µ6

∫
R1,3×Πα

C ∧ eσF−B , (A.22)
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where µ6 = 2πl−7
s and Πα are the three-cycles wrapped by the D6-branes. This piece of the

action is related to how D6-branes enter the Bianchi identity (2.10), which is implemented

in the 10d democratic action as

SRR+CS =− 1

4κ2
10

∫ [
1

2
G ∧ ?10 G−σ′(C) ∧

(
dG−H ∧G+

1

l2s

∑
α

qαδ(Πα) ∧ eB−σFα
)]

top

=− 1

4κ2
10

∫ [
1

2
G ∧ ?10 G−σ′(A) ∧

(
d(e−B ∧G) +

1

l2s

∑
α

qαδ(Πα) ∧ e−σFα
)]

top

.

(A.23)

Two comments are in order regarding this expression. First, unlike in the main text α

runs over D6-branes and their orientifold images and we have also included in the sum the

three-cycles wrapped by the O6-planes. For those one should take F = B − σF ≡ 0 and

qα = −4, while for D6-branes we have qα = 1. Second, the new terms in (A.23) induced by

D6-branes amount to one-half (A.22). This is because to embed the Chern-Simons action

into the democratic formulation one must split the RR potentials into two equal parts

made of electric and magnetic components (see [77]), and only the former are relevant for

the computations to follow. Notice that with these choices and from demanding that there

is a solution for the RR field strength G2 one recovers the RR tadpole condition (2.2).

As in the main text, one may explore the dependence of the type IIA flux potential

on the open string moduli by first considering a D6-brane configuration {Π0
α} that satisfies

the tadpole condition (2.2) and preserves supersymmetry. Notice that the latter require

that Π0
α is a special Lagrangian with F ≡ 0, which in particular implies that H|Π0

α
= 0.10

In addition we will impose that the D6-brane Wilson lines vanish for each Π0
α. One may

then consider homotopic deformations of the D6-brane embeddings Π0
α → Πα as well as

changes in their worldvolume fluxes and Wilson lines. In general the RR background fluxes

will depend on such deformations of the open string sector, and so will the dimensional

reduction of the 10d action (A.23).

At the reference configuration {Π0
α} the Bianchi identities (2.10) read

l2s d
(
dA + Ḡ

)
= −

∑
α

qαδ(Π
0
α) (A.24)

and so all the Ap except A1 are globally well-defined. Given the quantisation condi-

tion in (2.10), this implies that all the forms Ḡp+1 are quantised except Ḡ2. In practice

this means that if we consider the entries of the flux vector qA = (e0, ea,m
a,m) defined

by (2.11), all of them are integer number except the ma, whose precise value depends on the

choice of reference D6-brane configuration. Of course if we fix {Π0
α} these entries also take

discrete values, in the sense that one can shift them by integer numbers without spoiling

the quantisation condition in (2.10). Other than this subtlety for the values of ma, the

dimensional reduction of the 10d democratic action parallels the discussion made for the

closed string sector, and gives a similar 4d effective action.

10The discussion below can be generalised to relax the condition F ≡ 0, which in some cases may be too

restrictive. We will however impose it in this appendix for the sake of simplicity.
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Given a solution for the RR fluxes G at the reference configuration {Π0
α}, let us see

how they change as we deform the embeddings Π0
α → Πα homotopically, and we switch on

Wilson lines and worldvolume fluxes on the D6-branes. Let us first consider deforming a

single D6-brane α and call the corresponding change in RR background as ∆αG. Following

the discussion in appendix B.1, one can characterise such change by

∆αG =
1

l2s
δ(Πα) ∧

(
σA− 1

2
σ2A ∧ F

)
∧ eB − 1

ls
δ(Cα4 ) ∧

(
eB −$4

)
(A.25)

Here ∂Cα4 = Πα−Π0
α is a four-chain that represents the homotopic deformation of Π0

α to a

new special Lagrangian Πα, and δ(Cα4 ) is the bump delta-function or current associated to

it, with lsd δ(Cα4 ) = δ(Πα)− δ(Π0
α). Finally $4 is a co-exact form such that d$4 = H ∧B.

Due to the shift (B.4) the dimensional reduction of the 10d Lagrange multiplier will

be modified. Instead of the r.h.s. of (A.9) we will have

− dHC ∧
(
e−B ∧

[
σ′(Ḡ) + σ′(∆αG)

])
(A.26)

where Ḡ corresponds to the reference D6-brane configuration {Π0
α}. Upon integration one

finds that (A.10) is replaced by

SRR+CS,L =
1

8κ2
4

∫
R1,3

F̃4 ρ̃+ F̃4 a (ρ̃a + υ̃a) + F a4 (ρa + υa) + F 0
4 (ρ0 + υ0) , (A.27)

where

lsυ̃
a =

2

l4s

∫
Cα4
ω̃a , lsυa =

2

l4s

∫
Πα

ωa ∧ σA−
2

l4s

∫
Cα4
ωa ∧B ,

lsυ0 = − 2

l4s

∫
Πα

σA ∧ (B − σF ) +
1

l4s

∫
Cα4
B2 −$4 , (A.28)

and one may then rewrite these chain integrals in terms of the D6-brane moduli, which as

in section 2 can be defined in terms of the reference configuration {Π0
α}.

One can check that these expressions are related to the ones obtained in section 3

of [21], where the shift (A.27) was computed directly from the variation in the D6-brane

CS action. The main difference with respect to that computation is that now we are in

the presence of a non-vanishing NS flux H, and so the B-field is not globally well-defined.

However, imposing the absence of Freed-Witten anomalies for each D6-branes we have that∫
Πα
H = 0 and so B is well-defined in their worldvolume. Therefore it can also be made

well-defined on the four-chain Cα4 that represents the homotopic deformation from Π0
α. We

are then able to perform the split

B|Cα4 = baωa + B̃ (A.29)

with B̃ the co-exact piece of the B-field satisfying dB̃ = H|Cα4 . Given this split one can see

that $4|Cα4 = 1
2B̃ ∧ B̃|Cα4 .
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With these conventions, one may easily evaluate (A.28) in terms of open string moduli

and fluxes by using the definitions (2.49)–(2.53). One finds

lsυ0 =

(
bcnαc i − nαF i +

1

2
hKg

K
iα

)
(bdf id α − θiα) + baℵaα ,

lsυa = −nαa i(bcf ic α − θiα)− (bcnαc i − nαF i)f ia α − ℵaα , (A.30)

lsυ̃
a = qa ,

where we have defined

ℵaα =
2

l4s

∫
Cα4
B̃ ∧ ωa (A.31)

which is independent of the choice of four-chain Cα4 provided that H∧ωa ≡ 0.11 Notice that

the shift (B.4) will also affect the dimensional reduction of the 10d kinetic terms, resulting

in the above shift ρA → ρA + υA also in the second term of (2.11).

Eqs. (A.30) reproduce (2.58) provided that

ℵaα =
1

2
hKHK

aα (A.32)

where HK
aα are functions of the D6-brane geometrical deformations satisfying (2.59), and

used by Hitchin in order to in order to describe the metric on the moduli space of special

Lagrangian submanifolds [79]. A more precise definition for our purposes is [21]

∂
ϕjβ

HK
aα = (ηa β)ijg

K
iαδαβ . (A.33)

where gKiα is defined as in (2.56) and

(ηaα)ij ≡ l−3
s

∫
Πα

ιXjωa ∧ ηi =
∂f ia α

∂ϕjα
(A.34)

measures the deformation of the special Lagrangian three-cycle Πα with respect to a normal

vector X = 1
2 lsϕ

j
αXj in terms of its cohomology (recall that l−2

s ηi is a basis of integer

harmonic two-forms of Πα). See [21] for a more detailed discussion of these quantities.

With these definitions at hand one can see that

∂ϕiα(ℵaα) =
1

l3s

∫
Cα4
LXi

(
B̃ ∧ ωa

)
=

1

l3s

∫
Πα−Π0

α

ιXi

(
B̃ ∧ ωa

)
+

1

l3s

∫
Cα4
ιXi (H ∧ ωa)

=
1

l3s

∫
Πα−Π0

α

ιXi

(
B̃ ∧ ωa

)
=

1

l3s

∫
Πα−Π0

α

B̃ ∧ ιXiωa =
1

2
hK g

K
j (ηaα)ji (A.35)

where we have used H ∧ ωa = 0 and that B̃ can be chosen to have an even number of legs

along Πα. This determines the desired relation up to a constant and, since both ℵaα and

HK
aα vanish at the reference cycle Π0

α, (A.32) follows.

11This is true at the vacua of the theory, like the supersymmetric vacua where H ∈ H(3,0)+(0,3)
− (M6).
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Before concluding let us mention that there are some additional couplings in the 4d

action between the two-forms ΞK and the open strings moduli. Specifically we find that

the last term in (A.10) has now the form

Stwo-forms =
1

8κ2
4

∫
R1,3

[
dξ′K +

1

2
θidgKi

]
∧
[
dΞK + hKc

0
3

]
. (A.36)

Integrating out the two-forms proceeds exactly in the same way as before taking into

account the modification of the duality relation due to the presence of open string degrees

of freedom.

B The potential from standard 4d supergravity

In this appendix we recover the scalar potential (2.60) from the Cremmer et al. F-term

potential of standard 4d N = 1 supergravity, using the tree-level superpotential and Kähler

potentials given in the main text. We follow the same approach as in section 6 of [21], but

now to the presence of D6-brane moduli we add a non-trivial NS H-flux. This complicates

the computation because then several no-scale identities are no longer valid, and in addi-

tion the superpotential depends on the 4d holomorphic variables NK , which are complex

structure moduli redefined by the open string moduli, as in (2.63). We first discuss this

dependence from the viewpoint of holomorphicity of the superpotential, and then discuss

several properties of the Kähler metrics. As in [21], under certain simplifying assumptions

for such metrics one is able to carry the computation of the F-term potential analytically,

and we show that the result matches the potential obtained from the dimensional reduction

of appendix A.

B.1 The superpotential

The type IIA flux superpotential can be written in the form [80]

iW =
1

l6s

∫
M6

e−φRe Ω ∧H − iG ∧ eiJ (B.1)

which is manifestly gauge invariant and globally well-defined. Notice that in a Calabi-Yau

J is harmonic, so only the harmonic pieces of G contribute to the integral (B.1). As pointed

out in [21, 80], this expression not only contains the closed string superpotential but also

the open string one. To see how both are contained, one may proceed as in section 2 and

consider a reference configuration of D6-branes wrapping special Lagrangian three-cycles

{Π0
α}, with vanishing worldvolume flux F and satisfying the tadpole condition (2.2). The

local open string moduli space can then be parametrised through homotopic deformations

Π0
α → Πα. Then one can split the RR flux background G into two pieces

G = G0 +
∑
α

∆αG (B.2)

with G0 satisfying the Bianchi identities and quantisations conditions for the reference

configuration, and ∆αG representing the change in G as we replace the D6-brane at Π0
α
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with the one at Πα. More precisely we have that

dHG0 = −
∑
α

qαδ(Π
0
α) ∧ eB , dH∆αG = δ(Π0

α) ∧ eB − δ(Πα) ∧ eB−σF (B.3)

In compactifications with vanishing H-flux it is quite simple to describe suitable solu-

tions for G0 and ∆αG. For instance one has that

∆αG ' −j(Cα4 ,F) = − 1

ls
δ(Cα4 ) ∧ eB−σF̃ . (B.4)

Here j(Cα4 ,F) is a generalised current in the sense of [81, 82], that connects the D6-brane

wrapping Πα to the reference three-cycle Π0
α. As before δ(Cα4 ) is the bump delta-function

associated to a connecting four-chain Cα4 , such that lsd δ(Cα4 ) = δ(Πα)− δ(Π0
α). In general,

the r.h.s. of (B.4) will not be the same polyform as ∆αG, but they will only differ by an

exact piece, and so for the purposes of evaluating the integral (B.1) they will be equivalent.

To see this, one may proceed as in [79, 83] and perform a Hodge decomposition of both

polyforms into coexact, harmonic and exact pieces. Because the r.h.s. of (B.4) satisfies the

same Bianchi identity as ∆αG and H = 0, the coexact piece of both polyforms is equal.

Now, because of the quantisation condition for RR fluxes, the harmonic piece of ∆αG is

determined by its coexact piece, just like it happens for j(Cα4 ,F). Therefore only the exact

pieces of these functions can differ.

These observations are also useful in finding a suitable solution for G0 which, in general,

can be separated into a dH closed and non-closed piece, namely

G0 = −j0 −H ∧ C3 + eB ∧ Ḡ + . . . (B.5)

where the dots stand for terms that will not contribute to the integral in (B.1). Here

C3 = ξ′KαK stands for the harmonic piece of C3, Ḡ is a harmonic polyform of integer

fluxes and l2sdH(j0 + Ḡ0) =
∑

α qαδ(Π
0
α). In compactifications where H ≡ 0, the RR

tadpole condition (2.2) implies that there is a four-chain connecting the whole set of D6-

branes and O6-planes. In particular for the reference configuration we have that ∂C0
4 =∑

α Π0
α + RΠ0

α − 4ΠO6. One may then define the current j0 in terms of such a four-

chain [21, 60]

j0 = δ(C0
4) ∧ eB . (B.6)

Notice that a choice of four-chain C0
4 with a fixed boundary is only determined up to the

choice of a four-cycle Λ4. Nevertheless, choosing different four-cycles can be interpreted as

taking different flux quanta ma for Ḡ2, as their contribution to the superpotential is the

same. In general, one can interpret the contribution of j0 as shifting the lattice of integer

two-form fluxes ma ∈ Z to m̃a = ma+ εa0, with ~ε0 a fixed vector that depends on the choice

of reference D6-brane configuration {Π0
α}.

Plugging these expressions into (B.1) we obtain

W =
1

l6s

∫
M6

H ∧ Ωc − Ḡ ∧ eJc +
∑
α

1

l5s

∫
Cα4

(
Jc − σF̃

)2
+W0 (B.7)
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where Ωc and Jc are defined as in (2.28) and (2.47), respectively, α runs over only half of

the D6-branes of the compactification and not over their orientifold images and

W0 =
1

2l5s

∫
C04

(Jc − σF̃ )2 . (B.8)

Notice that the first two terms of (B.7) reproduce the standard form of the Calabi-Yau

closed string flux superpotential [33, 69, 70, 84], while the third corresponds to the D6-brane

superpotential [85, 86].

When the H-flux is non-vanishing, the equivalence (B.4) between polyforms is no

longer valid. Indeed, both forms still satisfy the same Bianchi identity but, because it

implies the operator dH and now H is non-trivial, their coexact piece is now different.

Since the coexact piece determines their harmonic part, when plugged into (B.1) these two

polyforms will give different results. In fact, one can easily check that if we consider (B.7)

in the presence of non-vanishing H the integral will depend continuously on the choice of

four-chain Cα4 , which is unacceptable.

So instead of the r.h.s. of (B.4) one should consider replacing ∆αG by a polyform with

the same coexact piece. A suitable choice seems to be

∆αG ' 1

l2s
δ(Πα) ∧

(
σA− 1

2
σ2A ∧ F

)
∧ eB − 1

ls
δ(Cα4 ) ∧

(
eB −$4

)
(B.9)

where $4 is the co-exact form such that d$4 = H ∧ B. Notice that when H = 0 this is

equivalent to the previous Ansatz. Replacing this into (B.1) we obtain

− 2

l4s

∫
Πα

σA ∧ (Jc − σF ) +
1

l5s

∫
Cα4
J2
c −$4 (B.10)

instead of the four-chains in (B.7). Notice that now these chain-integral are invariant under

continuous deformations of Cα4 as long as dHJ = 0.

Interestingly, armed with this last expression we can determine the definition of 4d

holomorphic variable of the complex structure sector used in the main text. For that we

need to extract the dependence of the full superpotential (B.1) with respect to the quanta

of background NS flux H. Indeed, performing the split (A.29) in Πα and Cα4 with the same

gauge choice for B̃, we obtain that (B.10) gives

1

l4s

∫
Cα4
Jc∧ B̃−

2

l4s

∫
Πα

σA∧ B̃+ · · · = 1

2
ℵaαT a−

1

2
hKg

K
iαθ

i
α =

1

2
hK
(
HK
aαT

a − gKiαθiα
)

+ . . .

where we have used (A.32). Adding this contribution to the one from the first term of (B.7)

one obtains that the full superpotential depends on

− hKNK = −hK

[
N ′K +

1

2

∑
α

(
gKiαθ

i
α − T aHK

aα

)]
(B.11)

which indeed corresponds to the 4d holomorphic variable (2.63).
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In general, evaluating the expression (B.7) for a Calabi-Yau flux compactification with

D6-branes we will obtain the following polynomial superpotential

ls(W −W0) = e0 − eaT a +
1

2
KabcmaT bT c − 1

3!
mT aT bT c − hKNK − Φi

α (nαF i − nαa iT a) .

(B.12)

which indeed matches the expression (2.61) used in the main text. In the following we will

use this same expression to evaluate type IIA the flux potential via the standard 4d N = 1

supergravity formula.

B.2 The Kähler metrics

Before computing the F-term scalar potential it is useful to discuss the structure of the

Kähler metric that arises from the Kähler potential K = KK +KQ, obtained from rewrit-

ing (2.27) and (2.29) in terms of the holomorphic variables. Here the discussion is rather

similar to the one in appendix A of [21], since the metrics are the same. First we have the

general relations that come from the fact that e−K is a homogeneous function of degree 7

Kαβ̄KαKβ̄ = 7 , Kαβ̄Kβ̄ = −2iIm Ψα , (B.13)

where α, β run over all the fields Ψα in the effective theory.

Then, one may consider the simplifying assumption that the chain integrals f ia α and

gKiα defined in (2.51) and (2.56), respectively, do not depend on the complex structure of

the compactification, and in particular that they only depend on the Kähler moduli ta and

on Im Φi
α through the D6-brane position ϕiα defined as in (A.33) (see [21] for a justification

of this approximation). Then, following appendix A of [21], we have that the Kähler metric

has the form

K =

(
N N.Ξ†

Ξ.N Ω + Ξ.N.Ξ†

)
, (B.14)

where NIJ̄ = 1
4∂n′I∂n′JKQ and ΞKα̂ = ∂ψα̂n

′K , with ψα̂ the imaginary part of the Kähler

and brane moduli and n′K = ImN ′K of the complex structure moduli. Finally

Ω =

(
A B

C D

)
, (B.15)

with

Aab̄ = ∂a∂b̄KK + (∂n′KKQ)∂a∂b̄n
′K , (B.16)

Ba̄ = (∂n′KKQ)∂a∂̄n
′K , (B.17)

Di̄ = (∂n′KKQ)∂i∂̄n
′K , (B.18)

and C = B†. The inverse of the full Kähler metric K is then easily computed to be

K−1 =

(
N−1 + Ξ†.Ω−1.Ξ −Ξ†.Ω−1

−Ω−1.Ξ Ω−1

)
. (B.19)
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From the definition of the 4d holomorphic variable defined in (2.63) we have that

n′K = nK +
1

2
taHK

a , (B.20)

where we have dubbed nK = ImNK . We can use this relation to compute the various

components of the inverse Kähler metric, obtaining

K Īa = −∂αn′I(Ω−1)aα = −∂in′I(Ω−1)ai − ∂bn′I(Ω−1)ab

= −1

2

[
Kabf ibg

I
i +Kab(HI

b − f ibgIi )
]

= −1

2
KabHI

b , (B.21)

K Īi = −∂αn′I(Ω−1)iα = −∂jn′I(Ω−1)ij − ∂an′I(Ω−1)ia

= −1

2

[
gIj

(
Dij + f iaf

j
bK

ab
)

+Kabf ib(H
I
a − f jagIj )

]
= −1

2
DijgIj −

1

2
Kabf ibH

I
a , (B.22)

where we used that ∂in
′I = 1

2g
I
i and ∂an

′I = 1
2(HI

a − f iagIi ). A similar computation gives

K J̄I . Summarising we find that

K Īa = −1

2
K b̄aHI

b , (B.23)

K Īi = −1

2

[
Dji gIj +K b̄af ia HI

b

]
, (B.24)

K J̄I = NJ̄I +
1

4

[
K b̄a HJ

b HI
a + Dij gIi g

J
j

]
. (B.25)

B.3 The F-term potential

Let us now compute the F-term scalar potential through the standard formula

VF =
1

κ2
4

eK
(
Kαβ̄DαWDβ̄W − 3|W |2

)
, (B.26)

where the index α runs over the entire set of the fields in the 4d theory.

First the relations (B.13) allow to rewrite the above expression as

κ2
4V = eK

(
Kαβ̄∂αW∂β̄W + 4Im

(
ImΨα∂αWW

)
+ 4|W |2

)
, (B.27)

and then we can proceed now to the computation of the individual terms. For simplicity

we will merge the two indices of the open string moduli Φi
α into a single one Φi.

The computation of the last two terms of (B.27) follows closely the one in [21]:

4l2s(|W |2 + Im
[
Ψα∂αWW

]
)

=

[
2e0 − 2eab

a +Kabcmabbbc − 1

3
mKabcbabbbc − 2Re Φi(nF i − na iba)−2hIξ

I

]2

−
[
Kama −mKaba + 2Im Φina it

a

]2

+
4

3
mK ImW (B.28)

In addition we can employ the relations (B.23)–(B.25) for the Kähler metrics to simplify

the remaining terms in the scalar potential. We find that

Kαβ̄∂αW∂β̄W = Kab̄∂̂aW∂̂b̄W + NIJ̄∂IW∂J̄W

+GijD6

[
∂iW −

1

2
gKi ∂KW

] [
∂̄W −

1

2
gLj ∂L̄W

]
(B.29)
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where the modified derivative is ∂̂a = ∂a + f ia∂i − 1
2HK

a ∂K . The second term in (B.29) is

familiar from compactifications with H-flux without D6-branes. It is of the form

NIJ̄hIhJ =
1

2
e−2φ

∫
H3 ∧ ∗H3 , (B.30)

and it is expected to arise from integrating out the three-form corresponding to the NS-

flux. The term proportional to the D6-brane inverse metric can, as in [21], be identified

with the DBI piece of the potential. Notice that now we have

VDBI =
eK

κ2
4

GijD6

[
∂iW −

1

2
gKi ∂KW

] [
∂̄W −

1

2
gLj ∂L̄W

]
(B.31)

=
eK

l2sκ
2
4

GijD6 (nF i − na iT a)
(
nF j − na j T̄ a

)
where we have defined nF i as in (2.56).

Finally, let us look at the first term in the r.h.s. of (B.29), which is to be combined

with (B.28). The computation parallels again the one in [21]. We have that

l2s r.h.s. (B.29)

= Kab̄

[
ea −Kacdmcbd +

1

2
mKacdbcbd −

1

2
mKa − Re Φina i + f ia(nF i − nc ibc)−

1

2
HK
a hK

]
×
[
eb −Kbcdmcbd +

1

2
mKbcdbcbd −

1

2
mKb − Re Φinb i + f ib(nF i − nc ibc)−

1

2
HK
b hK

]
+Kab̄

[
Kacmc −mKacbc + Im Φina i + f ianc it

c

]
×
[
Kbcmc −mKbcbc + Im Φinb i + f ibnc it

c

]
. (B.32)

To proceed we add up the first term in the second line in (B.28) and the last two lines

of (B.32). Just like in [21] we obtain

4

9
K2Kab̄(m

a −mba + qa)(mb −mbb + qb) . (B.33)

Next we take the first two lines of (B.32) and rewrite them as

Kab̄

[
ea −Kacdmcbd +

1

2
mKacdbcbd −

1

2
mKa − Re Φina i + f ia(nF i − nc ibc)−

1

2
HK
a hK

]
×
[
eb −Kbcdmcbd +

1

2
mKbcdbcbd −

1

2
mKb − Re Φinb i + f ib(nF i − nc ibc)−

1

2
HK
b hK

]
= Kab̄

[
ea −Kacdmcbd +

1

2
mKacdbcbd − Re Φina i + f ia(nF i − nc ibc)−

1

2
HK
a hK

]
×
[
eb −Kbcdmcbd +

1

2
mKbcdbcbd − Re Φinb i + f ib(nF i − nc ibc)−

1

2
HK
b hK

]
− 4

3
Kmta

[
ea −Kacdmcbd +

1

2
mKacdbcbd − Re Φina i + f ia(nF i − nc ibc)−

1

2
HK
a hK

]
+

1

4
Kab̄KaKbm2 (B.34)
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and we combine the last line of this equation with the last term in (B.28) to obtain

4

3
mK ImW − 4

3
Kmta

[
ea −Kacdmcbd +

1

2
mKacdbcbd

− Re Φina i + f ia(nF i − nc ibc)−
1

2
HK
a hK

]
+

1

3
K2m2

=

(
1

3
− 2

9

)
K2m2 +

4

3
mK

(
nI +

1

2
taHI

a

)
hI =

1

9
K2m2 +

4

3
mKn′IhI .

(B.35)

To sum up, we find that the F-term scalar potential reads

Vtotal = VDBI + Vloc +
1

κ2
4

eK
[
4%2

0 + gab%a%b +
4

9
eKK2gab%̃

a%̃b +
1

9
eKK2ρ̃2 + NIJhIhJ

]
(B.36)

where

ls%0 = e0 − baea +
1

2
Kabcmabbbc − m

6
Kabcbabbbc − hIξI − (baf ia − θi)(nF i − na iba) ,

ls%a = ea −Kabcmbbc +
m

2
Kabcbbbc − (baf ia − θi)na i + f ia(nF i − nc ibc)−

1

2
HK
a hK ,

ls%̃
a = ma −mba + qa ,

ls%̃ = m, (B.37)

the term VDBI is given by (B.31) and

Vloc =
4

3
mKn′IhI . (B.38)

Notice that everywhere in the potential appear the geometric variables of the complex

structure moduli N ′K . On the other hand, the term ξI within %0 stands for the axionic

component of the 4d holomorphic field NK . When expressed in term of the geomet-

ric axions, this term will contain further dependence in the open string moduli, namely

given (2.63) we have that

ξI = ξ′I − 1

2
baHI

a +
1

2
gIi θ

i , (B.39)

and therefore

ls%0 = e0 − hKξ′K −
(
nF i −

1

2
gKi hK

)
θi −

(
ea + θina i + f ianF i −

1

2
HK
a hK

)
ba

+
1

2
Kabc(ma + qa)bbbc − m

6
Kabcbabbbc

ls%a =

(
ea + θina i + f ianF i −

1

2
HK
a hK

)
−Kabc(mb + qb)bc +

m

2
Kabcbbbc

ls%̃
a = ma + qa −mba

ls%̃ = m, (B.40)

matching the results of appendix A.
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C Periodic D6-brane positions

In some particular compactifications, the position of the three-cycles wrapped by the D6-

branes is of periodic nature. One then expects that such directions in open string moduli

space can be described in terms of periodic scalars that enter the monodromic structure of

the potential, just like any of the multiple axions. One familiar class of models where this

occurs are toroidal and orbifold compactifications, where typically D-brane positions can

be understood as Wilson line scalars in dual descriptions of the theory. In those cases, the

functions f ia α and gKiα defined in (2.51) and (2.56) are linear in the microscopic parameter

ϕiα describing the positions of the three-cycle Πα wrapped by the D6-brane. In general one

can write them in the form

f ia α = (ηaα)ijϕ
j
α , gKiα = (QKα )ijϕ

j
α , HK

aα =
1

2
(ηaα)ki(QKα )kjϕ

i
αϕ

j
α (C.1)

where (ηaα)ij and (QKα )ijϕ
j
α are constant tensors whose precise value is not relevant for

the present discussion (see section 2 of [21] for their precise definition). What is important

is that then these quantities satisfy the following relation

HK
aα =

1

2
f ia αg

K
iβδαβ . (C.2)

When plugged into the matrix S in (3.11), this implies that we can write S as the expo-

nential of a nilpotent matrix. In particular for the toroidal case we have that

St = eϕ
i
αQ

α
i (C.3)

with

Qαi =



0 0 0 0 0 0

0 0 0 0 (ηa)
j
i 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1
2Q

K
ij

0 0 0 0 0 0


. (C.4)

Therefore, we can treat Qαi as one of the nilpotent generators of section 4, describing the

interplay of 4d axions and fluxes. Finally, because of the structure of eq.(3.10), one can

incorporate the D6-brane periodic positions ϕ into the definition of the axion rotation

matrix R.

Now, and interesting point is that the generator matrices Qαi do not commute with

the generators P of section 4. In particular, they do not commute with the Wilson line

matrices of (4.17). This fact is not that surprising, since when one describes discrete gauge

symmetries involving two periodic scalars of the same complex field one often finds non-

commutativity, see [87] for other examples. In our case this translates into the fact that

the matrices R and S above do not commute.
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The way that R and S do not commute is quite interesting. To see this let us define

R̂ =



1 0 0 0 0 0

bb δba 0 0 0 0
1
2Kabcb

abc Kabcbc δab 0 0 0
1
3!Kabcb

abbbc 1
2Kabcb

bbc ba 1 0 0

−θj 0 0 0 δji 0

ξ′L 0 0 0 0 δLK


, (C.5)

That is, R̂ the axion rotation matrix but with the 4d supergravity axions replaced by the

microscopic, geometric axions of the compactification. Now one can check that

R̂ = SRS−1 (C.6)

and so the non-commutativity of the above generators translates into the dictionary be-

tween the notion of microscopic geometric axions and macroscopic 4d axions. Notice that

this observation relies on the precise definition of holomorphic variable (2.63) in terms of

open string moduli, and provides a cross-check of the latter. It is quite remarkable that the

matrices S give us the dictionary between geometric and 4d supergravity axions. It would

be interesting to see if this can be related to the fact that 4d supergravity variables have

to transform holomorphically when performing closed loops in open string moduli space,

which is one of the criteria used to find the 4d redefinitions of closed string moduli with

open string moduli, see e.g. [88].

Moreover, (C.6) implies that the description of all the flux-axion polynomials from the

axion polynomial ρ0 in (5.10) can be made with both macroscopic and microscopic axions.

Indeed, one can define

ls~ρ = St



ls(ρ0 + υ0)

ls(ρa + υa)

ls(ρ̃
a + υ̃a)

lsρ̃

lsρF i
lsρK


= Rt−1



e0

eb
mb

m

nF j
hL


(C.7)

as done in (5.2). The components of this vector then satisfy eqs.(5.13). Using (C.6) one

can also write

ls~ρ
′ =



ls(ρ0 + υ0)

ls(ρa + υa)

ls(ρ̃
a + υ̃a)

lsρ̃

lsρF i
lsρK


= R̂t−1St−1



e0

eb
mb

m

nF j
hL


. (C.8)

By following similar arguments to those below (5.10), one can see that the components of

the vector ~ρ ′ satisfy equations similar to (5.13), but now instead deriving with respect to

the microscopic axions.
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D Simple type IIA toroidal orientifold with metric fluxes

In this appendix we calculate the type IIA scalar potential in the toroidal orientifold

T 6/(Z2 × Z2) presented in [33], that is, considering only the closed string moduli and

in the presence of the usual RR and NS fluxes plus metric fluxes. As we will see, the

bilinear structure of the potential (including the triple factorisation) still holds when we

define the new ρ’s according to eq. (5.10).

The complete 4d scalar potential has the following contributions:

V = VRR + VNS + Vloc + VSS, (D.1)

where the first three pieces are the contributions from RR, NS fluxes and localised sources,

respectively. The last piece is the Scherk-Schwarz potential, which appears in the presence

of metric fluxes when one performs the dimensional reduction of the purely gravitational

part in the 10d action. Before computing the potential, let us recall how the Bianchi

identities get modified in the presence of metric fluxes ω [33]

H3 = dB2 + ω ·B2 + H̄3,

Gp = dCp−1 + ω · Cp−1 −H ∧ Cp−3 + (Ḡe−B).
(D.2)

Recall that these can be obtained from the expression without metric fluxes by making the

substitution dX → dX +ω ·X. In the following, we will use the notation from [32] for the

metric fluxes, that is a1

a2

a3

 =

ω1
56

ω2
64

ω3
45

 ;

 b11 b12 b13

b21 b22 b23

b31 b32 b33

 =

−ω1
23 ω4

53 ω4
26

ω5
34−ω2

31 ω5
61

ω6
42 ω6

15−ω3
12

 . (D.3)

In addition, let us recall that in the toroidal compactification the Kähler and complex

structure moduli are T i = bi + iti and N I = ξI + inI , with i = 1, 2, 3 and I = 0, 1, 2, 3.

From eq. (D.2) one can compute the explicit expressions for the field strengths along the

compact dimensions in terms of the fluxes and the axions by expanding them in the usual

basis of harmonic forms. After integrating upon the compact dimensions in the 10d action,

one can identify ρ0 and from there calculate the rest of the ρ’s and the superpotential by

applying eqs. (5.10) and (5.8), respectively. The ρ’s are then

lsρ0 = e0 − eibi +m1b2b3 +m2b1b3 +m3b1b2 −mb1b2b3 − hIξI + bijb
iξj − aibiξ0,

ls
∂ρ0

∂bi
= − lsρi = −

(
ei −mjbk −mkbj +mbjbk − bijξj − aiξ0

)
, (i 6= j 6= k 6= i),

ls
∂2ρ0

∂bi∂bj
= lsρ̃

k =
(
mk −mbk

)
, (i 6= j 6= k 6= i),

ls
∂3ρ0

∂bi∂bj∂bk
= − lsρm = −m, (i 6= j 6= k 6= i),

ls
∂ρ0

∂ξ0
= − lsρh0 = −

(
h0 + aib

i
)
,

ls
∂ρ0

∂ξi
= − lsρhi = −

(
hi − bijbj

)
,
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ls
∂2ρ0

∂bi∂ξj
= lsρbij = bij ,

ls
∂2ρ0

∂bi∂ξ0
= lsρai = −ai , (D.4)

and the superpotential reads

lsW = e0 − eiT i +m1T 2T 3 +m2T 1T 3 +m3T 1T 2

−mT 1T 2T 3 − hIN I + bijT
iN j − aiT iN0,

which matches the superpotential in [32] up to the different conventions used here. Let us

now compute the different pieces of the scalar potential in (D.1) in terms of the ρ’s and

the geometric moduli, which enter the Kähler potential as eK = −1/(27n0t1t2t3n1n2n3).

The RR piece takes the form

VRR =
4eK

κ2
4l

2
s

t1t2t3

{
1

t1t2t3
ρ2

0 +
t1
t2t3

ρ2
1 +

t2
t1t3

ρ2
2 +

t3
t1t2

ρ2
3

+
t2t3
t1
ρ̃2

1 +
t1t3
t2
ρ̃2

2 +
t1t2
t3
ρ̃2

3 + t1t2t3ρ
2
m

}
.

The piece coming from the NSNS part of the action is

VNS =
4eK

κ2
4l

2
s

(
n2

0ρ
2
h0 + n2

1ρ
2
h1 + n2

2ρ
2
h2 + n2

3ρ
2
h3

)
. (D.5)

The contribution from localised sources as D6-branes or O6-planes that preserve N =

1 supersymmetry gets an extra piece from the metric fluxes with respect to the usual

one. The general expression for the whole localised term is given in [33] and using the

Bianchi identities for G2 (which include the source terms from the D6-branes and O6-

planes) one can express it in terms of the geometric moduli and the fluxes, obtaining the

following expression

Vloc =
8eK

κ2
4l

2
s

t1t2t3
[
(mh0 +miai)n0 + (mhi −mjbji)ni)

]
. (D.6)

The terms inside each parenthesis can be written as linear combinations of some of the ρ’s

and then this contribution to the scalar potential takes the form

Vloc = 8eK

κ24l
2
s
t1t2t3

[
n0(ρmρh0 − ρ̃iρai) + n1(ρmρh1 − ρ̃iρbi1)

+n2(ρmρh2 − ρ̃iρbi2) + n3(ρmρh3 − ρ̃iρbi3)
]
.

(D.7)

The last term in (D.1), the Scherk-Schwarz potential, comes from the dimensional

reduction of the purely gravitational part of the action (the curvature scalar) in the presence

of metric fluxes. In order to compute it, it is necessary to know the explicit metric of the

compact manifold, and this is not the case for a general Calabi-Yau. However, this can be
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calculated in our toroidal setup since its metric in terms of the geometric moduli is known

to be the following12 [33]:

g̃ij =



t1

√
n0

n2n3

t2

√
n0

n1n3

t3

√
n0

n1n2

t1

√
n2n3

n0

t2

√
n1n3

n0

t3

√
n1n2

n0



. (D.8)

In terms of a general metric g̃ij and the metric fluxes, the Scherk-Schwarz potential can be

written as [33]:

VSS =
1

64
√
−n0n1n2n3

(
ωijkω

i′
j′k′ g̃ii′ g̃

jj′ g̃kk
′
+ 2ωijkω

k
j′ig̃

jj′
)

=
1

64
√
−n0n1n2n3

∑
i,j,k

(
ωijkω

i
jkg̃iig̃

jj g̃kk + 2ωijkω
k
jig̃

jj
)
,

(D.9)

where in the last line the sum is explicitly indicated and applies whenever the metric of

the torus is diagonal, as in our case. The result, written in terms of the ρai ’s, ρbij ’s and

the moduli can be written as the following bilinear:

VSS = 4eKρvp M
pq ρvq , (D.10)

where we have defined

ρvp = (ρa1 , ρb23 , ρb32 , ρa2 , ρb13 , ρb31 , ρa3 , ρb12 , ρb21 , ρb11 , ρb22 , ρb33) (D.11)

and the 12× 12 matrix Mpq is given by

Mpq = blockdiag
 n2

0t
2
1 −n0n3t1t2 −n0n2t1t3

−n0n3t1t2 n2
3t

2
2 −n2n3t2t3

−n0n2t1t3 −n2n3t2t3 n2
2t

2
3

 ,

 n2
0t

2
2 −n0n3t1t2 −n0n1t2t3

−n0n3t1t2 n2
3t

2
1 −n1n3t1t3

−n0n1t2t3 −n1n3t1t3 n2
1t

2
3

 ,

 n2
0t

2
3 −n0n2t1t3 −n0n1t2t3

−n0n2t1t3 n2
2t

2
1 −n1n2t1t2

−n0n1t2t3 −n1n2t1t2 n2
1t

2
2

 ,

 n2
1t

2
1 −n1n2t1t2 −n1n3t1t3

−n1n2t1t2 t22n
2
2 −n2n3t2t3

−n1n3t1t3 −n2n3t2t3 n2
3t

2
3


 .

(D.12)

12Here we denote this metric by g̃ij in order to avoid confusions with the previously defined metric on

the Kähler moduli space gab.
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One important comment regarding this last result is in order. When computing the scalar

potential from the standard N = 1 supergravity formula one obtains a more complicated

matrix Mpq which further entries than those in (D.12), and which is not invertible. It is

only after applying the Bianchi identities (D.2) to constrain the fluxes that Mpq becomes

block diagonal and invertible. The mixing terms that appear in (D.17) will not change this

invertibility property, so therefore we find that the bilinear form multiplying the ρ’s is only

invertible whenever the Bianchi identities have been properly taken into account. Notice

that the invertibility of this bilinear form is necessary to have a 4d four-form description of

the scalar potential, so it seems that one can only match a Lagrangian of the form (2.13)

to the standard F-term potential formula if the Bianchi identities are imposed. It would be

interesting to explore the generality of this result and its consequences for further classes

of string compactifications.

Adding all these pieces together, it can be seen that the full potential may be written

as a bilinear in the ρ’s, which depend only on the fluxes and the axions, and with bilinear

metric depending only on the geometric moduli. The whole scalar potential can be actually

written as the following bilinear

V = 4eK
(

(ρe)T (ρm,h)T (ρm,ω)T
)Ge 0 0

0 Gm,h 0

0 0 Gm,ω


 ρe

ρm,h

ρm,ω

 , (D.13)

where we have defined the vectors of ρ’s as

ρe =


ρ0

ρ1

ρ2

ρ3

 , ρm,h =


ρm
ρh0
ρh1
ρh2
ρh3

 , ρm,ω =


ρ̃1

ρ̃2

ρ̃3

ρvp

 , (D.14)

and the matrices are

Ge =


1

t21
t22
t23

 , (D.15)

Gm,h =



(t1t2t3)2 n0t1t2t3 t1t2t3n1 t1t2t3n2 t1t2t3n3

n0t1t2t3 n2
0 0 0 0

t1t2t3n1 0 n2
1 0 0

t1t2t3n2 0 0 n2
2 0

t1t2t3n3 0 0 0 n2
3



, (D.16)
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Gm,ω =



(t2t3)2 0 0

0 (t1t3)2 0 (NT )m
′n

0 0 (t1t2)2

Nmn′ Mmn


. (D.17)

The indices denoted with primes go from 1 to 3 and those without the primes go from 1 to

12. The off block-diagonal terms are given by the matrix Nmn′ and its transpose. It can

be read from the potential generated by the localised sources and has the form

Nmn′ = −t1t2t3



n0 0 0

0 n3 0

0 0 n2

0 n0 0

n3 0 0

0 0 n1

0 0 n0

n2 0 0

0 n1 0

n1 0 0

0 n2 0

0 0 n3



. (D.18)

Notice that all the off-diagonal terms come from both the localised and the Scherk-

Schwarz pieces of the scalar potential. Moreover, all the matrices Ge, Gm,h and Gm,ω have

non-vanishing determinant, so that the matrix that enters eq. (D.13) is invertible. This

means that the whole scalar potential can be obtained from a 4d effective action like the

one in (2.13). Finally, let us remark that, apart from the bilinear structure of the 4d scalar

potential, it is easy to see from the definition of the ρ’s in (D.4) that they can be rotated

into a basis in which they are only given by the fluxes, that is, we can find a rotation

matrix R that rotates our 4-forms into a basis in which they couple directly to the fluxes,

as in all the previous cases. To sum up, even in the presence of metric fluxes the scalar

potential still enjoys the triple factorisation into saxions, axions and fluxes introduced in

section 2.

For completeness, let us show how we can again express the supergravity auxiliary

fields as functions of the ρ’s:

F̄ T̄
i

= 2eK/2ti

{[∑
j 6=i

tjρj − tiρi + t1t2t3ρm +
3∑

J=0

nJρhJ

]

+i

[
ρ0 − tjtkρ̃i + titj ρ̃k + titkρ̃j −

∑
j 6=i

n0tjρaj + n0tiρai

−
3∑
l=1

∑
j 6=i

nltjρbjl +
3∑
l=1

nltiρbil

]}
, (D.19)
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F̄ N̄
i

= 2eK/2ni

{[
3∑
j=1

tjρj − t1t2t3ρm + n0ρh0 +

3∑
j 6=i

njρhj − n
iρhi

]

+i

[
ρ0 − tjtkρ̃i − titj ρ̃k − titkρ̃j −

3∑
j=1

n0tjρaj −
3∑
l=1

∑
j 6=i

njtlρblj +
3∑
l=1

nitlρbli

]}
,

(D.20)

F̄ N̄
0

= 2eK/2n0

{[
3∑
j=1

tjρj − t1t2t3ρm − n0ρh0 +

3∑
j=1

njρhj

]

+i

[
ρ0 − tjtkρ̃i − titj ρ̃k − titkρ̃j +

3∑
j=1

n0tjρaj −
3∑

l,j=1

njtlρblj

]}
, (D.21)

where all the sums are indicated explicitly and i 6= j 6= k 6= i.

E Discrete symmetries in toroidal Z2 × Z2 type IIA orientifolds

We describe here how the discrete symmetries discussed in the main text appear as modular

symmetries in a simple toroidal setting. We consider the Type IIA Z2 ×Z2 toroidal orien-

tifold discussed in [34], which has in the untwisted sector seven moduli: T a with a = 1, 2, 3

and N I with I = 0, . . . , 4. The RR fluxes transform as a (2, 2, 2) representation of the tori

modular groups SL(2,Z)3 under which the three Kähler moduli T a transform non-linearly

in the usual way. We can collect the 8 RR fluxes into a tensor fαβγ , with α, β, γ = 1, 2 in

the following way:

f1ab =

(
−e0 e3

e2 −m1

)
, f2ab =

(
e1 −m2

−m3 m

)
. (E.1)

Now, the shift generators T i are given by

T a =

(
1 na

0 1

)
. (E.2)

Let us consider now a general shift transformation of this flux tensor,

fαβγ −→ f̃αβγ = T 1
αρT 2

βτT 3
γσf

ρτσ . (E.3)

In particular e.g. for the component f1ab one obtains

f̃1ab = T 1
1cT 2

adT 3
brf

cdr = T 1
11T 2

adf
1dr(T 3)Trb + T 1

12T 2
adf

2dr(T 3)Trb

=

(
1 n2

0 1

)(
−e0 e3

e2 −m1

)(
1 0

n3 1

)
+ n1

(
1 n2

0 1

)(
e1 −m2

−m3 m

)(
1 0

n3 1

)

=

(
−e0 + naea −m1n2n3 −m2n1n3 −m3n1n2 +mn1n2n3 e3 −m1n2 − n1m2 +mn1n2

e2 −m1n3 − n1m3 +mn1n3 −m1 +mn1

)
.

(E.4)
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This indeed matches the transformations for the RR fluxes described in the main text. One

can easily check the transformation for the other flux components.

In this toroidal case one can also see how the other SL(2,Z) generators

Si =

(
0 1

−1 0.

)
. (E.5)

act on the fluxes. One finds for the simultaneous duality in all the three complex planes

of the torus

f̃1ab = S1
12S2

adS3
brf

2dr =

(
0 1

−1 0

)(
e1 −m2

−m3 m

)(
0 −1

1 0

)
=

(
m m3

m2 e1

)
(E.6)

which indeed corresponds to the way fluxes transform under a duality Ri → 1/Ri in all

three complex planes, as discussed in [19]. It also corresponds to the duality transformation

described at the end of section 4.2 in the main text. It would be interesting to explore

further the case with NS fluxes. In this case the fluxes transform in the (2, 2, 2, 2, 2, 2, 2, 2)

of SL(2,Z)7. One can construct the master polynomial in this more general case by setting

all saxions to zero in the general superpotential in eq. (6.14) in ref. [34]. From here one

can obtain all the shift invariant polynomials associated to all the fluxes, geometric and

non-geometric, and write down the potential in terms of them. An important issue here is

the consistency with all the Bianchi identities which would need to be imposed.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[52] R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional string

compactifications with D-branes, orientifolds and fluxes, Phys. Rept. 445 (2007) 1

[hep-th/0610327] [INSPIRE].

[53] F. Marchesano, Progress in D-brane model building, Fortsch. Phys. 55 (2007) 491

[hep-th/0702094] [INSPIRE].
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