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Abstract
This paper is concerned with the intrinsic geometric structure of interior 
transmission eigenfunctions arising in wave scattering theory. We numerically 
show that the aforementioned geometric structure can be very delicate and 
intriguing. The major findings can be roughly summarized as follows. We say that 
a point on the boundary of the inhomogeneity is singular if the surface tangent 
is discontinuous there. The interior transmission eigenfunction then vanishes 
near a singular point where the interior angle is less than π, whereas the interior 
transmission eigenfunction localizes near a singular point if its interior angle is 
bigger than π. Furthermore, we show that the vanishing and blowup orders are 
inversely proportional to the interior angle of the singular point: the sharper the 
corner, the higher the convergence order. Our results are first of its type in the 
spectral theory for transmission eigenvalue problems, and the existing studies 
in the literature concentrate more on the intrinsic properties of the transmission 
eigenvalues instead of the transmission eigenfunctions. Due to the finiteness 
of computing resources, our study is by no means exclusive and complete. We 
consider our study only in a certain geometric setup including corner, curved 
corner and edge singularities. Nevertheless, we believe that similar results hold 
for more general singularities and rigorous theoretical justifications are much 
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desirable. Our study enriches the spectral theory for transmission eigenvalue 
problems. We also discuss its implication to inverse scattering theory.

Keywords: transmission eigenfunction, corner signularity, vanishing and 
localizing, spetral theory, acoustic scattering, inverse scattering

(Some figures may appear in colour only in the online journal)

1. Introduction

Let D be a bounded domain in Rd, d = 2, 3 and n ∈ L∞(D) be a measurable function such that 
n ≡ \ 1 in D. Consider the following interior transmission problem




∆u + k2nu = 0 in D,
∆u0 + k2u0 = 0 in D,
u − u0 ∈ H2

0(D),
 (1.1)

where the Sobolev space H2
0(D) is defined as the completion of test functions in D by the 

standard H2(D)-norm. For Lipschitz domains

H2
0(D) =

{
v ∈ H2(D) : v = 0, ∂νv = 0 on ∂D

}

with ν signifying the unit normal vector directed into the exterior of D.

Definition 1.1. A value k ∈ C, k �= 0 for which the transmission problem (1.1) has non-
trivial solutions (u, u0) ∈ L2(D)× L2(D) such that u − u0 ∈ H2

0(D) is called an interior trans-
mission eigenvalue associated with (D; n). The nontrivial solutions (u, u0) are called the corre-
sponding interior transmission eigenfunctions.

In what follows, for simplicity, we call k and (u, u0) in definition 1.1, respectively, the 
transmission eigenvalue and transmission eigenfunctions. It is our objective of this paper to 
demonstrate and investigate certain intrinsic geometric properties of the transmission eigen-
functions through numerical experiments.

The interior transmission eigenvalue problem arises in inverse scattering theory and has become 
a very important area of research. In fact, both linear sampling method [8] and the factorization 
method [20], two important reconstruction methods for inverse scattering problems, succeed at 
wavenumbers that are not transmission eigenvalues. The study of the transmission eigenvalue 
problem is mathematically interesting and challenging since it is a type of non-elliptic and non 
self-adjoint problem. Recently, the transmission eigenvalue problems were also connected to invis-
ibility cloaking [18, 21]. In the literature, the existing studies concentrate more on the intrinsic 
properties of the transmission eigenvalues, including the existence, discreteness and infiniteness, 
see for example [5–7, 9, 11, 26]. However, there are few results concerning the intrinsic properties 
of the transmission eigenfunctions. Only very recently there is some started appearing. An example 
is [27] where the authors have applied the theory of nodal sets to the transmission eigenfunctions of 
a radially symmetric refractive index to determine the latter from the eigenvalues.

In a recent article [2] by the first and third author of this paper, it is shown that if the pertur-
bation 1 − n possesses a corner on its support, and the interior angle of the corner is less than 
π, then the associated transmission eigenfunctions must vanish near the corner under a certain 
generic condition. In this article, with the help of numerical methods, we shall show that the 
geometric structure of the transmission eigenfunction can be very delicate and intriguing, 
and the study in [2] together with the current one opens up a new direction of research on the 
spectral theory of transmission eigenvalue problems.

E Blåsten et alInverse Problems 33 (2017) 105001
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We first recall two important topics in the classical spectral theory for Dirichlet/Neumann 
Laplacian: nodal sets and eigenfunction localization. The former is the set of points in the 
domain where the eigenfunction vanishes. For the latter, an eigenfunction is said to be localized 
if most of its L2-energy concentrates in a subdomain which is a fraction of the total domain. The 
vanishing and localizing of Dirichlet/Neumann Laplacian eigenfunctions have many important 
applications, both in pure and applied areas, and they still remain active in the mathematical 
investigation; see [15] for a more recent survey. The aim of our study is to show that the trans-
mission eigenfunctions also possess the intrinsic vanishing and localizing behaviours.

The major numerical findings of the present paper can be roughly summarized as follows. 
If there is a singular point on the support of the underlying perturbation to the refractive index, 
then the transmission eigenfunction vanishes near the singular point if its interior angle is less 
than π, whereas the transmission eigenfunction localizes near the sungular point if its interior 
angle is bigger than π. By a singular point we mean a point where the tangent at the boundary 
is discontinuous. Furthermore, we show that the vanishing and blowup orders are proportional 
to the interior angle of the singularity by inversion: the sharper the angle, the higher the conv-
ergence order. Due to the limitedness of the computing resources, our study is by no means 
exclusive and complete. We consider our study only in a certain geometric setup including 
corner, curved corner and edge singularities. Nevertheless, we believe that similar results hold 
for more general singularities and rigorous theoretical justifications are very desirable. Our 
study enriches the spectral theory for transmission eigenvalue problems. More relevant dis-
cussions of our study shall be given in section 6.

The rest of the paper is organized as follows. In the next section, we briefly review some 
existing results on the transmission eigenvalues and eigenfunctions. In section 3, we present 
the numerical method to solve the transmission eigenvalue problem. Sections  4 and 5 are 
devoted to the main results on numerically showing the vanishing and localizing properties, 
as well as the convergence orders in two and three dimensions. We conclude our study in sec-
tion 6 with some discussions.

2. Preliminaries on transmission eigenvalue problem

Throughout the rest of the paper, we assume that n(x), x ∈ D is real-valued. It is remarked that 
we allow the presence of complex eigenvalues in our study.

We first collect some theoretical results for the interior transmission eigenvalue problem 
(1.1). Denote by

n∗ = inf
x∈D

n(x), n∗ = sup
x∈D

n(x)

the essential infimum and supremum of the refractive index. The following theorem shows the 
existence of interior transmission eigenvalues [7].

Theorem 2.1. Let n ∈ L∞(D) satisfies either one of the following assumptions

 (1) 1 + α � n∗ � n � n∗ < ∞ for some constants α > 0,
 (2) 0 < n∗ � n � n∗ � 1 − β  for some constants β > 0,

then there exists an infinite set of interior transmission eigenvalues with +∞ as the only ac-
cumulation point.

In the numerical computation of the transmission eigenvalue problem, it is desirable to 
have an estimate of the lower bound of the first positive transmission eigenvalue. Recall from 
[7] that:

E Blåsten et alInverse Problems 33 (2017) 105001
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Theorem 2.2. Let R be the radius of the smallest ball containing D. Denote by λ∗ and λ∗ 
the first positive transmission eigenvalue corresponding to the ball of radius 1 with refractive 
index n ≡ n∗ and n ≡ n∗, respectively. Let λ1 be the first Dirichlet eigenvalue for −∆ in D. 
Denote by k1 the first positive transmission eigenvalue corresponding to D and the refractive 
index n.

 (1) If 1 + α � n∗ � n � n∗ < ∞ for some constant α > 0, then

k1 � max

(
λ∗

R
,

√
λ1

n∗

)
.

 (2) If 0 < n∗ � n � n∗ < 1 − β  for some constant β > 0, then

k1 � max

(
λ∗

R
,
√
λ1

)
.

Our numerical experiments indicate the existence of complex transmission eigenvalues, 
but this has not been established theoretically in general. The following theorem shows the 
non-existence of purely imaginary transmission eigenvalues [10].

Theorem 2.3. If n > 1 or n < 1 almost everywhere in D, then there exists no purely imagi-
nary transmission eigenvalues.

Next, we give a more definite description of the vanishing and localizing of transmission 
eigenfunctions.

Definition 2.1. Assume that k ∈ C is a transmission eigenvalue, then there exist 
u0, u ∈ L2(D) such that

∆u + k2nu = 0 in D,

∆u0 + k2u0 = 0 in D,

u − u0 ∈ H2
0(D), ‖u0‖L2(D) = 1.

Let P ∈ ∂D be a point and Br(P) be a ball of radius r ∈ R+ centred at P. Set Dr(P) := 
Br(P) ∩ D. Assume that

‖1 − n‖L∞(Dr( p)) � ε0, ε0 ∈ R+. (2.1)

Then we say that vanishing occurs near P if

lim
r→+0

1√
|Dr(P)|

‖u0(x)‖L2(Dr(P)) = 0,

whereas we say that localizing occurs near P if

lim
r→+0

1√
|Dr(P)|

‖u0(x)‖L2(Dr(P)) = +∞,

where |Dr(P)| signifies the area or volume of the region Dr(P), respectively, in two and three 
dimensions.

E Blåsten et alInverse Problems 33 (2017) 105001
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If P is the vertex of a corner with an interior angle less than π, the vanishing of the transmis-
sion eigenfunctions has been rigorously verified in [2]. Our observation of the vanishing and 
localizing near a corner point comes from the corner scattering study in [3, 4, 13, 14, 16, 25]. 
An important consequence of the study in [3, 4, 13, 25] is the fact that the transmission eigen-
function u0 cannot be analytically extended across a corner point to form an entire solution to 
the Hemholtz equation, ∆u0 + k2u0 = 0 in Rd. However, we note that due to the interior regu-
larity, the transmission eigenfunction u0 is always analytic away from the corner point. Hence, 
heuristically, the failure of the analytic extension may indicate that u0 either vanishes or blows 
up when approaching the corner point. Clearly, the failure of the analytical extension should 
also hold across any irregular point on the support of 1 − n, and hence we conjecture that 
the vanishing or localizing behaviours of the transmission eigenfunctions would occur near 
any singular point on the support of the underlying. Theoretical proof of such a conjecture is 
fraught with significant difficulties. Indeed, the proof in [2] of the vanishing of the transmis-
sion eigenfunction in the special case near a corner with an interior angle less than π already 
involves much technical analysis and advanced tools. In the next two sections, we conduct 
extensive numerical experiments to verify the aforementioned conjecture, and hopefully, the 
numerical results can also inspire the rigorous theoretical proof in the future.

3. Finite element method for the transmission problem

If D is smooth and n is a constant, then one may solve the transmission eigenvalue problem 
(1.1) by using the integral equation formulation [12, 19, 28]. If D is nonsmooth or n is non-
constant, then the finite element method is more appropriate [10, 17, 23, 24]. We shall use the 
continuous finite element approximation as proposed in [10], which we describe briefly in the 
sequel. Multiplying the second equation in (1.1) by a test function φ ∈ H1

0(D) and integrating 
by parts, we obtain

(∇u0,∇φ)− k2(u0,φ) = 0 ∀φ ∈ H1
0(D). (3.1)

Multiplying the first equation in (1.1) by a test function ψ ∈ H1
0(D) and integrating by parts, 

we obtain

(∇u,∇ψ)− k2(nu,ψ) = 0 ∀ψ ∈ H1
0(D). (3.2)

To enforce the boundary conditions in (1.1) weakly, we multiply it by a test function ψ ∈ H1(D) 
and integrate by parts to obtain

(∇u,∇ψ)− k2(nu,ψ) = (∇u0,∇ψ)− k2(u0,ψ) ∀ψ ∈ H1(D). (3.3)

Note that (3.2) is already implied by (3.1) and (3.3). Hence a variational formulation for (1.1) 
is:

 to find (u, u0) ∈ H1(D)× H1(D) satisfying (3.1) and (3.3), together with the essen-
tial boundary condition u = u0 on ∂D.

Let T  be a regular triangular or tetrahedral mesh of D. Denote by V the finite element 
subspace of H1(D) consisting of piecewise linear functions on each element of T  and 
V0 = V ∩ H1

0(D). Denote by {ηj : j = 1, · · · , I} the set of linear Lagrange basis functions for 
V0 and {ηj : j = 1, · · · , I} ∪ {ζj : j = 1, · · · , J} the set of linear Lagrange basis functions for 
V, respectively. Let

uh
0 =

I∑
j=1

u( j)
0 ηj +

J∑
j=1

w( j)ζj, uh =
I∑

j=1

u( j)ηj +
J∑

j=1

w( j)ζj

E Blåsten et alInverse Problems 33 (2017) 105001
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represent the finite element approximations of u0 and u, respectively. Note that the essential 
boundary condition u = u0 on ∂D is already enforced in the above representation. Let

X =
[
u(1)

0 , · · · , u(I)
0 , u(1), · · · , u(I), w(1), · · · , w(J)

]
∈ C2I+J

denote the vector of unknown coefficients, then the finite element discretization of (3.1) and 
(3.3) can be written as

AX = k2BX, (3.4)

where

A =




SII
1 0 SIB

1

0 SII
1 SIB

1

SBI
1 −SBI

1 0


 , B =




MII
2 0 MIB

2

0 MII
1 MIB

1

MBI
2 −MBI

1 MBB
2 − MBB

1




with the block stiffness and mass matrices given by

SII
1 (i, j) = (∇ηj,∇ηi), 1 � i � I, 1 � j � I,

SIB
1 (i, j) = (∇ζj,∇ηi), 1 � i � I, 1 � j � J,

SBI
1 (i, j) = (∇ηj,∇ζi), 1 � i � J, 1 � j � I,

MII
1 (i, j) = (ηj, ηi), 1 � i � I, 1 � j � I,

MIB
1 (i, j) = (ζj, ηi), 1 � i � I, 1 � j � J,

MBI
1 (i, j) = (ηj, ζi), 1 � i � J, 1 � j � I,

MBB
1 (i, j) = (ζj, ζi), 1 � i � J, 1 � j � J,

MII
2 (i, j) = (nηj, ηi), 1 � i � I, 1 � j � I,

MIB
2 (i, j) = (nζj, ηi), 1 � i � I, 1 � j � J,

MBI
2 (i, j) = (nηj, ζi), 1 � i � J, 1 � j � I,

MBB
2 (i, j) = (nζj, ζi), 1 � i � J, 1 � j � J.

The assembly of the above matrices is implemented with the FEM package given by [1]. The 
non-Hermitian generalized eigenvalue problem (3.4) is then solved by the sptarn function 
in MATLAB, which is based on the Arnoldi algorithm with spectral transformation. The lower 
bound for the search interval of the eigenvalues may be chosen according to theorem 2.2.

4. Numerical experiments: two dimension

4.1. Example: equilateral triangle

Let D be the equilateral triangle with vertices at P1 = (−1, 0), P2 = (1, 0) and P3 = (0,
√

3). 
Let the refractive index n = 16. The first three real transmission eigenvalues are found to be 

1.5748, 1.9807 and 1.9807 with multiplicities. Denote by u(i)
0  and u(i) the ith transmission 

eigenfunctions corresponding to the ith transmission eigenvalue. The magnitude of the trans-
mission eigenfunctions for the first three eigenvalues are shown in figure 1.

We observe that each transmission eigenfunction tends to zero towards every corner point 
of D.

We refer to corners as the singular points. Let P be a corner point of D and Br(P) and Dr(P) 
be defined as before. Define the average L2 norm of a transmission eigenfunction v in Dr(P) as

E Blåsten et alInverse Problems 33 (2017) 105001
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δ(v, P; r) =
1√

|Dr(P)|
‖v‖L2(Dr(P)) .

We numerically demonstrate that δ(v, P; r) → 0 as r → 0 and estimate the rate of conv-

ergence. In figure 2 we plot δ(u(i)
0 , Pj; r) and δ(u(i), Pj; r) versus r for i = 1, 2, 3, j = 1, 2, 3. 

From figure 2 we further confirm that each transmission eigenfunction vanishes towards every 
corner point of D in the sense that δ(v, P; r) → 0 as r → 0. Furthermore, define the conv-
ergence rate α through the asymptotic behavior of δ(v, P; r)

δ(v, P; r) ∼ c(v, P)r−α(v,P) as r → 0 (4.1)

for each v = u(i)
0  or v = u(i) and each P = Pj, where c > 0 and α > 0 are constants indepen-

dent of r but may dependent on v and P. The constants c and α may also depend on the domain 
D and the refractive index n.

We are more concerned with the order of convergence α. Fitting the data in figure 2 by 
linear polynomials we obtain the estimates of the convergence order shown in table 1. From 
this result we conjecture that the order of convergence α(v, P) is independent of the transmis-
sion eigenfunction v.

4.2. Example: right triangle

In this example, we investigate the dependence of convergence rate α on the domain D, 
the corner point Pj and the refractive index n. Let D be the right triangle with vertices at 
P1 = (

√
3, 0), P2 = (0, 1) and P3 = (0, 0). Let the refractive index be n = 16 + 8 sin(4xy). 

Figure 1. The magnitude of transmission eigenfunctions for the equilateral triangle 

with refractive index n = 16. (A) |u(1)
0 |; (B) |u(2)

0 |; (C) |u(3)
0 |; (D) |u(1)|; (E) |u(2)|;  

(F) |u(3)|.

E Blåsten et alInverse Problems 33 (2017) 105001
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The first three real transmission eigenvalues are computed to be 2.1651, 2.4993 and 2.8814 
with corresponding eigenfunctions shown in figure 3. The convergence of the average L2 norm 
of the eigenfunctions towards the corner points is shown in figure 4 and the order of conv-
ergence is listed in table 2.

Figure 2. The vanishing of the transmission eigenfunctions towards the corner points 

of the equilateral triangle with refractive index n = 16. (A) v = u(1)
0 ; (B) v = u(2)

0 ;  

(C) v = u(3)
0 ; (D) v = u(1); (E) v = u(2); (F) v = u(3).

Table 1. Order of convergence α(v, P) of the transmission eigenfunctions for 

the equilateral triangle with refractive index n = 16; (A) v = u( j)
0 , j = 1, 2, 3;  

(B) v = u( j), j = 1, 2, 3.

P1 P2 P3

(A)

u(1)
0

3.03 3.04 3.03

u(2)
0

3.05 3.08 3.05

u(3)
0

3.05 3.05 3.05

(B)

u(1) 3.03 3.03 3.02

u(2) 3.05 3.08 3.06

u(3) 3.05 3.05 3.06

E Blåsten et alInverse Problems 33 (2017) 105001
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Comparing the results in tables 1 and 2 we conjecture that the order of convergence α(v, P) 
in (4.1) is also independent of the domain D and the refractive index n. Furthermore, α(v, P) 
increases as the sharpness of the corner P increases.

In the previous examples all the corners of the domain have angles less than π. In the next 
example we consider corners with angle greater than π.

4.3. Example: arrow shaped polygon

Let D be an arrow shaped polygon with vertices at P1 = (0,
√

3/3), P2 = (1, 0), P3 = (0,
√

3) 
and P4 = (−1, 0). Let the refractive index be n = 16. The first three real transmission eigen-
values are found to be 2.2954, 2.7635 and 2.8532 with corresponding eigenfunctions shown 
in figures 5(A)–(C). The convergence of the average L2 norm of the eigenfunctions towards 
the corner points is shown in figures 6(A)–(C) and the order of convergence for the corner 
points P2, P3, P4 is listed in table 3(A). From figures 5 and 6 we conjecture that the vanish-

ing properties of the eigenfunctions u(i)
0  and u(i) are only valid if the angle of the corner 

is less than π. However, if consider the difference v( j) = u(i) − u(i)
0 , then δ(v( j), P, r) → 0 

as r → 0 even for corner points with angle greater than π. But the order of convergence 
depends on the eigenfunction. This can be seen from the figures 5(D)–(F), 6(D)–(F) and 
table 3(B).

Figure 3. The magnitude of transmission eigenfunctions for the right triangle with 

refractive index n = 16 + 8 sin(4xy). (A) |u(1)
0 |; (B) |u(2)

0 |; (C) |u(3)
0 |.

Figure 4. The vanishing of the transmission eigenfunctions towards the corner points of 

the right triangle with refractive index n = 16 + 8 sin(4xy). (A) v = u(1)
0 ; (B) v = u(2)

0 ; 

(C) v = u(3)
0 .

E Blåsten et alInverse Problems 33 (2017) 105001
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4.4. Example: moon shaped domain

We consider domain with curved angles. Denote Kω = {(r, θ) : r > 0, 0 < θ < ω} a dihedral 
domain in R2 with opening angle ω ∈ (0, 2π) at the origin O.

Definition 4.1. [22] Let D be a bounded open set in R2. A point P ∈ ∂D is called a corner 
point if there exists a neighborhood V of P, a diffeomorphism Ψ of class C2 and an opening 
angle ω = ω(P) ∈ (0,π) ∪ (π, 2π) such that

Ψ(P) = O, Ψ(D ∩ V) = Kω ∩ BO(1), ∇Ψ(P) = I2×2.

Let D = D1 \ D2 be a moon shaped domain, where D1 is the disk centered at (−0.5, 0) with 
radius 1 and D2 is the disk centered at (0.5, 0) with radius 1. Clearly P1 = (0,−

√
3/2) and 

P2 = (0,
√

3/2) are two corner points of D both with opening angle π/3. The first three real 
transmission eigenvalues are found to be 1.6832, 1.8153 and 2.0688 with corre sponding eigen-
functions shown in figure 7. The convergence of the average L2 norm of the corre sponding 
eigenfunctions towards the corner points is shown in figure 8 and the order of conv ergence 
of shown in table 4. From figures 7 and 8 we see the vanishing properties of the transmission 

Table 2. Order of convergence α(u(i)
0 , Pj) of the transmission eigenfunctions for the 

right triangle with refractive index n = 16 + 8 sin(4xy).

P1 P2 P3

u(1)
0

6.81 3.05 1.72

u(2)
0

6.86 3.05 1.77

u(3)
0

6.74 3.04 1.77

Figure 5. The magnitude of transmission eigenfunctions for the arrow shaped 

domain with refractive index n = 16. (A) |u(1)
0 |; (B) |u(2)

0 |; (C) |u(3)
0 |; (D) |u(1) − u(1)

0 |;  
(E) |u(2) − u(2)

0 |; (F) |u(3) − u(3)
0 |.

E Blåsten et alInverse Problems 33 (2017) 105001
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eigenfunctions are still valid for corner points formed with curved boundary segments. 
Comparing the order of convergence of the corners P1, P2, P3 in table 1, corner P2 in table 2, 
corner P3 in table 3 and corners P1, P2 in table 4 we conjecture the order of conv ergence 
α(v, P) for a transmission eigenfunction v at a corner P does not depend on the shape of the 
corner but only on the opening angle ω(P).

4.5. Relation between angle and convergence order

From examples 4.2 and 4.3 we have found that the vanishing convergence order is related to 
the angle of the corner. In fact, the vanishing convergence rate increases as the sharpness of 
the corner increases. To find out more on the relation between angle and convergence rate, we 
perform a series of experiments both for interior angle less than π and greater than π.

We consider a series of isosceles triangles of the same height 1. The angles of the top cor-
ners are π12 , π6 , π3  and 2π

3 , respectively. All of the isosceles triangles have the same refractive 
index n = 16. We compute the first transmission eigenvalue and corresponding eigenfunction 
for each triangle. The vanishing rate of the average L2 norm of the eigenfunction near the 
top corner is shown for different angles in figure 9(A). Fitting the vanishing rate, we have  
figure 9(B), from which we can see that the vanishing rate is inversely proportional to the 
interior angle when it is less than π.

Furthermore, we perform experiments to find the relation between the localizing conv-
ergence rate and the interior angle when it is greater than π. Consider a series of circular 
sectors of radius 1 and angles 4π3 , 5π3 , 11π

6 , 23π
12 , respectively. All of the circular sectors have the 

Figure 6. The vanishing of the transmission eigenfunctions towards the corner points 

of the arrow shaped domain with refractive index n = 16. (A) u(1)
0 ; (B) u(2)

0 ; (C) u(3)
0 ;  

(D) u(1) − u(1)
0 ; (E) u(2) − u(2)

0 ; (F) u(3) − u(3)
0 .
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same refractive index n = 16. We compute the first transmission eigenvalue and corre sponding 
eigenfunction for each circular sector. The convergence rate of the average L2 norm of the 
corresponding eigenfunctions towards different corners is shown in figure 10(A). Fitting the 
localizing convergence rate, we have figure 10(B), from which we can see that the localizing 
convergence rate is also inversely proportional to the interior angle when it is greater than π. 
The localizing convergence rate increases as the angle of the corner increases.

Collecting the vanishing convergence rate of angles less than π and localization conv-
ergence rate of angles greater than π together, i.e. fitting the convergence rate for angles range 
from π12  to 23π

12  we have figure 11. We find that the vanishing and localizing convergence rate is 
inversely proportional to the angle of corner. What a surprising discovery!

4.6. On complex transmission eigenvalues and corresponding eigenfunctions

All of the above examples considered the real transmission eigenvalues. In our numerical 
calculations, complex transmission eigenvalues also appear. Table 5 list the first two com-
plex transmission eigenvalues for several domains. The shapes of these domains are those 

Table 3. Order of convergence of the transmission eigenfunctions for the arrow shaped 
domain with refractive index n = 16.

P2 P3 P4

(A)

u(1)
0

6.84 3.05 6.83

u(2)
0

6.90 3.42 6.90

u(3)
0

6.87 3.06 6.87

P1 P2 P3 P4

(B)

v(1) 1.50 8.47 4.94 8.48

v(2) 1.98 8.66 6.91 8.66

v(3) 1.98 8.66 6.91 8.66

Figure 7. The magnitude of transmission eigenfunctions for the moon shaped domain 

with refractive index n = 16. (A) |u(1)
0 |; (B) |u(2)

0 |; (C) |u(3)
0 |.
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considered in the previous examples. All of those domains have a refractive index n = 16. We 
consider both angle less than π and angle greater than π. Our numerical experiments show 
that the complex transmission eigenvalues appear in terms of conjugate pair. The vanishing 
and localizing property of transmission eigenfunctions are still valid when the eigenvalues are 
complex. The numerical experiments also show that there exists no purely imaginary trans-
mission eigenvalues when the refractive index is real-valued.

Figure 8. The vanishing of the transmission eigenfunctions towards the corner points 

of the moon shaped domain with refractive index n = 16. (A) u(1)
0 ; (B) u(2)

0 ; (C) u(3)
0 .

Table 4. Order of convergence α(u(i)
0 , Pj) of the transmission eigenfunctions for the 

moon shaped domain with refractive index n = 16.

P1 P2

u(1)
0

3.06 3.06

u(2)
0

3.07 3.07

u(3)
0

3.03 3.05

Figure 9. (A) The vanishing of the transmission eigenfunctions towards corner of each 
isosceles triangle with different angles, refractive index n = 16. (B) Inverse proportional 
fitting of the vanishing convergence rate of isosceles triangles with different angles.
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5. Numerical experiments: three dimension

In this section, we are going to numerically investigate the vanishing and localizing property 
of eigenfunctions in the three dimensional case.

We shall first give the definition of vertex and edge points in R3, refering to [22] and the 
recent work on edge scattering [13].

Definition 5.1. Let D ∈ R3 be a bounded open set. A point P ∈ ∂D is called a vertex if 
there exists a neighborhood V of P, a diffeomorphism Ψ of class C2 and a polyhedral cone Π 
with the vertex at O such that

∇Ψ(P) = I3×3 ∈ R3, Ψ(P) = O,

Figure 10. (A) The localizing of the transmission eigenfunctions towards corner of each 
circular sector with different angles, refractive index n = 16. (B) Inverse proportional 
fitting of the localizing convergence rate of circular sectors with different angles.

Figure 11. Inverse proportional fitting of the vanishing and localizing convergence rate 
of circular sectors with different angles.
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Table 5. Complex transmission eigenvalues.

k1 k2

Unit square 4.5428 ± 0.5648i 7.0416 ± 0.5847i
Equilateral triangle 3.6021 ± 0.4363i 5.5520 ± 0.4633i
Right triangle 5.5472 ± 0.6826i 5.5520 ± 0.4633i
Arrow shaped polygon 5.1585 ± 0.7016i 7.3080 ± 0.6746i
Moon shaped domain 3.6210 ± 0.4946i 4.8331 ± 0.4303

Figure 12. The magnitude of transmission eigenfunctions for the unit cube with the 

refractive index n = 16. (A) surface of |u(1)
0 | and |u(1)|; (B) surface of |u(2)

0 | and |u(2)|;  
(C) surface of |u(3)

0 | and |u(3)|; (D) |u(1)
0 |; (E) |u(2)

0 |; (F) |u(3)
0 |; (G) |u(1)|; (H) |u(2)|; (I) |u(3)|.
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and Ψ maps V ∩ D̄ onto a neighborhood of O in Π̄. P is called an edge point of D if

Ψ(V ∩ D) = (Kω ∩ B1)× (−1, 1)

for some ω(P) ∈ (0, 2π)\π .
We refer both vertex and edge points as the singular points. In this section, we numer-

ically show the vanishing and localizing property of the interior transmission eigenfunctions 
and investigate the convergence rates for both the vertices and edges. Similarly to the two-
dimensional case, we define the convergence rate α of a vertex, convergence rate β of an edge 
as follows.

Let P be a vertex of D and set

δ(v, P; r) =
1√

|Dr(P)|
‖v‖L2(DP(r)) , (5.1)

where |Dr(P)| is the volume of Dr(P) in three dimensions. Define the order of convergence 
rate α by the following asymptotic behavior of δ(v, P; r)

δ(v, P; r) ∼ c(v, P)r−α(v,P) as r → 0

for each v = u(i)
0  or v = u(i), where c > 0 and α > 0 are constants independent of r.

Let E be an edge of D and Br(E) be the (curved) cylinder with radius r and with center line 
to be edge E. Let Sr(E) = D ∩ Br(E). Define the average L2 norm of a transmission eigenfunc-
tion v in Sr(E) as

Figure 13. The vanishing of the transmission eigenfunctions towards the vertex P and 

the edge E of the unit cube with the refractive index n = 16. (A) u(1)
0 ; (B) u(2)

0 ; (C) u(3)
0 ; 

(D) u(1); (E) u(2); (F) u(3).
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Table 6. Order of convergence α(v, P) and β(v, E) of the transmission eigenfunctions 
for the unit cube with the refractive index n = 16.

u(1)
0 u(2)

0 u(3)
0 u(1) u(2) u(3)

Vertex: α 5.64 5.51 6.21 5.54 5.41 6.19
Edge: β 1.53 1.45 0.40 1.43 1.43 1.45

Figure 14. The magnitude of transmission eigenfunctions for the nut shaped polyhedron 

with the refractive index n = 16. (A) surface of |u(1)
0 | and |u(1)|; (B) surface of |u(2)

0 | and 

|u(2)|; (C) surface of |u(3)
0 | and |u(3)|; (D) |u(1)

0 |; (E) |u(2)
0 |; (F) |u(3)

0 |; (G) |u(1)|; (H) |u(2)|; 
(I) |u(3)|.
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δ(v, E; r) =
1√

|Sr(E)|
‖v‖L2(Sr(E)) , (5.2)

where |Sr(E)| is the volume of Sr(E). Define the order of convergence rate β by the following 
asymptotic behavior of δ(v, E; r)

δ(v, E; r) ∼ c(v, E)r−β(v,E) as r → 0

for each v = u(i)
0  or v = u(i), where c > 0 and β > 0 are constants independent of r. We 

would like to show that δ(v, P; r) → 0 and δ(v, E; r) → 0 as r → 0 and estimate the rate of 
convergence.

5.1. Example: unit cube

Let D be the unit cube of edge length 1 centered at 0. Let the refractive index n = 16. The first 
three real transmission eigenvalues are numerically computed to be k1 = 2.0671, k2 = 2.5860 

Figure 15. The vanishing of the transmission eigenfunctions towards the corner point 

P of the nut shaped polyhedron with the refractive index n = 16. (A) u(1)
0 ; (B) u(2)

0 ;  

(C) u(3)
0 ; (D) u(1); (E) u(2); (F) u(3).

Table 7. Order of convergence α(v, P) of the transmission eigenfunctions for the nut 
shaped polyhedron with the refractive index n = 16.

u(1)
0 u(2)

0 u(3)
0 u(1) u(2) u(3)

Vertex 4.57 4.46 4.27 4.5 4.46 4.36
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and k3 = 2.9884. Denote by u(i)
0  and u(i) the ith transmission eigenfunctions corresponding to 

the ith transmission eigenvalue. The magnitude of the transmission eigenfunctions for the first 
three eigenvalues are shown in figure 12. From figure 12 we see that the transmission eigen-
functions vanish both on the vertices and the edges.

Let P be the vertex (−0.5,−0.5,−0.5) and E be the edge connected by vertices 
(−0.5,−0.5,−0.5) and (−0.5,−0.5, 0.5). We discretize r in (5.1) and in (5.2) into 1/2, 1/4, 
1/8, 1/16, 1/32, simultaneously near point P and edge E. In figure 13 we plot δ(u( j)

0 ; r) and 
δ(u( j); r), j = 1, 2, 3 versus r for vertices and edges. From figure 13 we can see that each 
transmission eigenfunction vanishes near edges and vertices in the sense that δ(v, E; r) → 0 
and δ(v, P; r) → 0 as r → 0. We can also see that the convergence rate for vertices is faster 
than that for the edges. Table 6 lists the order of convergence. The order of convergence in 
table 6 is obtained by fitting the data in figure 13 by linear polynomials. From this result we 
conjecture that the convergence rate of vertices is faster than that of edges.

Figure 16. The magnitude of transmission eigenfunctions for the cone with the 

refractive index n = 16. (A) surface of |u(1)
0 | and |u(1)|; (B) surface of |u(2)

0 | and |u(2)|;  
(C) surface of |u(3)

0 | and |u(3)|; (D) |u(1)
0 |; (E) |u(2)

0 |; (F) |u(3)
0 |; (G) |u(1)|; (H) |u(2)|; (I) |u(3)|.
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5.2. Example: nut-shaped domain

In this example, we consider domain with curved angles. Let D be the intersection of three 
balls. The three balls are all of radius 0.8 and centred at (0, 1/2, 0), (−

√
3/4,−1/4, 0) and 

(
√

3/4,−1/4, 0), respectively. Let the refractive index of D be n = 16. The first three real 
transmission eigenvalues are computed to be 3.2592, 3.6796, 4.1936 with corresponding 
eigenfunctions shown in figure 14. It is easy to see that the transmission eigenfunctions vanish 
on all the vertexes and all the edges.

Let P be the top vertex (0, 0, 0.6245). In figure 15 we plot δ(u j
0, P; r) and δ(u j, P; r) versus 

r for j = 1, 2, 3. From figure 15 we can see that each transmission eigenfunction vanishes 
towards vertex P in the sense that δ(v, P; r) → 0 as r → 0. Fitting the data in figure 15 by 
linear polynomials we obtain the estimates of the convergence order shown in table 7. From 
this result we see that the vanishing properties of the transmission eigenfunctions are still valid 
for vertex formed with curved boundary segments in three dimension.

Figure 17. The vanishing of the transmission eigenfunctions towards the edge E 

and vertex P of the cone with the refractive index n = 16. (A) u(1)
0 ; (B) u(2)

0 ; (C) u(3)
0 ;  

(D) u(1); (E) u(2); (F) u(3).

Table 8. Order of convergence α(v, P), β(v, E) of the transmission eigenfunctions for 
the cone with the refractive index n = 16.

u(1)
0 u(2)

0 u(3)
0 u(1) u(2) u(3)

Vertex: α 4.02 3.48 3.53 4.06 3.50 3.51

Edge: β 2.53 2.47 2.54 2.44 2.31 2.38
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5.3. Example: cone

In this example, we consider a domain with curved edges. Let D be a cone of top point (0, 0, 1) 
and bottom radius 1/2. Let the refractive index of D be 16. The first three real transmission 
eigenvalues are computed to be k1 = 3.3668, k2 = 4.1259, k3 = 4.1710, where k2 has multi-
plicity 2. The corresponding eigenfunctions are shown in figure 16.

Let P be the vertex (0, 0, 1) and E be edge of bottom circle with radius 1/2 and centering 
at (0, 0, 0). We discretize r in (5.1) and in (5.2) into 1/2, 1/4, 1/8, 1/16, 1/32, simultaneously 
near edge and vertex. In figure 17 we plot δ(u j

0, E; r), δ(u j, E; r) and δ(u j
0, P; r), δ(u j, P; r) ver-

sus r for j = 1, 2, 3. From figure 17 we can see that each transmission eigenfunction vanishes 
towards vertex P and edge E in the sense that δ(v, P; r) → 0, δ(v, E; r) → 0 as r → 0. Fitting 
the data in figure 17 by linear polynomials we obtain the estimates of the convergence order 
of vertex and edge shown in table 8. From this result we see again that the convergence rate of 
vertex is faster than that of edge.

Figure 18. The magnitude of transmission eigenfunctions for the spherical hat with the 

refractive index n = 16. (A) surface of |u(1)
0 | and |u(1)|; (B) surface of |u(2)

0 | and |u(2)|;  
(C) surface of |u(3)

0 | and |u(3)|; (D) |u(1)
0 |; (E) |u(2)

0 |; (F) |u(3)
0 |; (G) |u(1)|; (H) |u(2)|; (I) |u(3)|.
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5.4. Example: spherical hat

Similar to the two dimensional case, we consider the vertex with angles greater than π. Let B 
be the unit ball and C be a cone with top point (0, 0, 0) and bottom radius 1. We consider the 
domain D := B\C . Let the refractive index of D be 16. The first four real transmission eigen-
values are computed to be k1 = 1.5995, k2 = 1.6990, k3 = 1.8956, k4 = 1.9220, where k2, k3 
has multiplicity 2. The corresponding eigenfunctions for k1, k2, k4 are shown in figure 18.

Let P be the vertex (0, 0, 0) and E be the circular bottom edge. We discretize r in (5.1) and 
in (5.2) into 1/2, 1/4, 1/8, 1/16, 1/32, simultaneously near edge and vertex. In figure 19 we 
plot δ(u j

0, E; r), δ(u j, E; r) and δ(u j
0, P; r), δ(u j, P; r) versus r for j = 1, 2, 3. From figure 19 

we can see that each transmission eigenfunction vanishes towards the edge E in the sense that 
δ(v, E; r) → 0 as r → 0, but not for vertex P, where P posses angle larger than π. The order of 
convergence rate of edge E is listed in table 9.

Figures 18 and 19 clearly show the localizing property of transmission eigenfunctions 
at vertex whose angle is larger than π. From the two dimensional figures  5(A)–(C) and 
three dimensional figures  18(A)–(C), we can see that the localizing behavior depends on 

Figure 19. The vanishing of the transmission eigenfunctions towards the edge E and 

vertex P of the spherical hat with the refractive index n = 16. (A) u(1)
0 ; (B) u(2)

0 ; (C) u(3)
0 ; 

(D) u(1); (E) u(2); (F) u(3).

Table 9. Order of convergence β(v, E) of the transmission eigenfunctions for the 
spherical hat with the refractive index n = 16.

u(1)
0 u(2)

0 u(3)
0 u(1) u(2) u(3)

Edge: β 2.05 1.65 1.58 2.03 1.54 1.45
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eigenfunctions and eigenvalue multiplicity. Furthermore, for the first transmission eigenvalue, 
the corresponding eigenfunction blows up towards exactly the vertex, while for the eigenval-
ues posses multiplicity, the corresponding eigenfunctions blow up near the vertex from differ-
ent directions which is rather complicate.

6. Concluding remarks

In this work, we numerically invesigate the vanishing and localizing properties of the interior 
transmission eigenfunctions at singular points on the support of the underlying refractive index, 
i.e. near points where the boundary tangent is not defined. We numerically show that if the inter-
ior angle of a corner is less than π, then the transmission eigenfunctions vanish near the corner, 
whereas if the interior angle is bigger than π, the transmission eigenfunctions localize near the 
corner. Furthermore, we estimate the order of the convergence rate and find that it is related to 
the angle of the corner. In the three dimensional case, we also present the vanishing property of 
transmission eigenfunctions on edges. It turns out that edges also posses the vanishing phenom-
ena. In the examples of cube and cone, the results show that the convergence rate of vertex is 
faster than that of the edge. On the one hand, our numerical results clearly verify the theoretical 
study in [2] on the vanishing property of transmission eigenfunctions near corners. On the other 
hand, the numerical results indicate that the geometric properties of the transmission eigenfunc-
tions can be much more delicate and intriguing than the one theoretically justified in [2]. Our 
numerical study is by no means exclusive and complete, and it opens up a new research direction 
for many further developments. As one possible application, the vanishing and localizing behav-
iours of transmission eigenfunctions clearly carry the geometric information of the underlying 
refractive index n, and hence they can be used in inverse scattering problems of recovering the 
refractive index from exterior measurements. We shall report this finding in a forthcoming paper.
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