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1 Introduction

Although the idea of generalising T-duality to non-Abelian isometry groups has rather old

roots [1], it is only recently that it has been studied as full solution-generating symmetry

of supergravity [2–8]. The recent work of Itsios et al. [7, 8] considered the application of

this duality transformation in IIB supergravity backgrounds preserving N = 1 supersym-

metry. For instance applying an SU(2) non-Abelian T-duality to the internal space of the

Klebanov-Witten background (AdS5×T 1,1) results in a solution of type IIA which retains

the AdS5 factor and has a lift to M-theory which corresponds to the geometries obtained

in [9] from wrapping M5 branes on an S2. In [8] similar dualisations were applied to

non-conformal geometries (Klebanov-Tsetylin, Klebanov-Strassler and wrapped D5 mod-

els) resulting in a new class of smooth solutions of massive type IIA supergravity. The

field theory interpretation of these massive IIA solutions is, as yet, undetermined. How-

ever an analysis of the gravity solution indicates they retain rich RG dynamics displaying

signatures of Seiberg duality, domain walls and confinement in the IR.
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A common feature of the geometries obtained in [8] is that they retain four dimensional

Poincaré invariance and it was argued that they should also retain N = 1 supersymmetry.

The conditions for a solution of type II supergravity to possess these symmetries can be

very elegantly stated using the language of G-structures [10, 11]. The existence of a single

four-dimensional conserved spinor implies that on the six-dimensional internal manifoldM

we have two spinors η1 and η2. If these spinors are proportional, the structure group of

TM , the tangent bundle ofM , is reduced to SU(3) and can be characterised by an invariant

real two-form J and complex three-form Ω with J ∧ Ω = 0 and iΩ ∧ Ω̄ = 4
3J

3. If on the

other hand the two spinors are nowhere parallel they each define a separate SU(3)-structure

and together equip M with an SU(2)-structure consisting of a complex nowhere-vanishing

vector field v + iw, a real two-form j and a complex two-form ω.

These conditions can also be restated using the language of generalised complex ge-

ometry in which we consider the bundle TM ⊕ T ∗M . The algebraic conditions of super-

symmetry imply that there exist two pure spinors Ψ± = η1+ ⊗ η2†± . Using the Clifford

map these pure spinors can be described as a formal sum of forms, for instance in the

case of SU(3)-structure we identify Ψ+ = e−iJ and Ψ− = Ω. The differential conditions

of supersymmetry can be succinctly expressed in this language (as closure conditions for

the annihilator space of these pure spinors under the H-twisted Courant bracket) and are

schematically given by

dHΨ1 = 0 , dHΨ2 = FRR , (1.1)

where dH = d +H∧, FRR denotes the RR fields and Ψ1,2 are related to the pure spinors

Ψ± depending on the type of supergravity in question.

This approach also makes clear the transformation rules under T-duality; these pure

spinors essentially transform in the same way as Ramond fields. Indeed, in the case where

M is Calabi-Yau, mirror symmetry serves to interchange the pure spinors e−iJ ↔ Ω. The

extension of this, à la Strominger, Yau and Zaslow [12], to SU(3) structure compactifi-

cations has been developed in [13, 14] and the case of general SU(3) × SU(3) structure

considered in [15].

The first purpose of this note is to study the effects of non-Abelian T-duality on these

G-structures and thereby to give credence to the conjecture made in [8] that in general

the result of the dualisation will be to take an SU(3)-structure background to one with

SU(2)-structure. A heuristic reason for this can be found by looking at the abelian case

following [16]. After T-duality, left and right movers couple to different set of frame fields

for the same geometry, call them êi+ and êi−. In the simplest case we can understand this

T-duality as a reflection on right movers so that in directions dualised êi+ = −êi−. The J

and Ω of the starting SU(3)-structure give rise, after dualisation, to a Ĵ and Ω̂ which may

be expressed in terms of either the left or right moving frame fields giving a corresponding

Ĵ± and Ω̂±. Suppose that the expression for Ĵ is

Ĵ± = ê1± ∧ ê2± + ê3± ∧ ê4± + ê5± ∧ ê6± . (1.2)

Consider the case where the dualised directions are 1 and 2, then Ĵ+ = Ĵ− and in this

case the T-dual also has SU(3)-structure. Now consider the dualisation of two directions
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that are not paired by the complex structure, say 1 and 3, in this case Ĵ+ 6= Ĵ− and type

changing has occurred; the SU(3)-structure gives rise to a T-dual SU(2)-structure after T-

dualisation. Since the non-Abelian T-dualisations performed in [8] involve three directions

they cannot respect the paring of the complex structure and so we anticipate them to be

type changing. One goal of this paper is to make this reasoning precise and to provide

explicit examples where the T-dual SU(2)-structure can be obtained.

The second part of this paper concerns a topic which at first sight might seem rather

disconnected from the above discussion namely the application of non-Abelian T-duality in

the construction of new ‘flavoured’ solutions of supergravity. The string dual view on the

addition of fundamental matter to the field theories has a rich history. Starting from the

study of the ‘quenched’ dynamics of fundamental fields, equivalent to the addition of probe

branes in the string backgrounds to the case in which flavour branes (sources) backreact

and change the original geometries, various technical problems have been resolved. For

reviews see [17–19].

In the case of backgrounds preserving some amount of SUSY, the first technical point

to be addressed is to find SUSY embeddings for these sources or flavour branes. The

embeddings were initially found solving differential equations associated with the kappa-

symmetry matrix. A more refined and efficient way of expressing the same conditions relies

on G-structures and calibration forms. Indeed, the findings of papers like [20–24] among

many others can be thought as examples of the generic formalism developed in [25, 26] and

more explicitly layed-out in [27, 28].

A generic feature about these solutions encoding the dynamics ofNf fields transforming

in the fundamental representation of the SU(Nc) gauge group is that the string backgrounds

should in principle represent sources localised on those SUSY-preserving submanifolds. The

complications associated with the non-linear and coupled partial differential equations this

problem requires, lead to the consideration of ‘smeared’ sources — the field theoretical effect

of such simplification is the explicit breaking of SU(Nf ) → U(1)Nf . The SUSY-preserving

way of implementing this smearing is also described by the G-structures classifying the

original (unflavoured) background, see [27, 28] for details.

Hence, there is a rich interplay between G-structures and the dynamics of SUSY sources

in Supergravity. This is one of the themes of this work. Using the results established in the

first part of the paper we will be able to construct the non-Abelian T-dual of a flavoured

background.

We hope it is clear from the discussion above, that the main goal of this paper is to

geometrise part of the information of the works [7, 8] . The idea being that once in a

geometric context, the physical analysis (to be done in the future) will become more clear

and systematic. On the other hand, we emphasise the underlying motivation: the ’utility’

of non-Abelian T-duality is to produce backgrounds (hard to obtain by an educated guess)

that being smooth, they define a dual QFT. So, understanding the geometric side of the

non-Abelian T-duality will help characterise a set of new strongly coupled field theories.

The structure of this paper is as follows: in section 2 we present some of the salient

details of non-Abelian T-duality. In section 3 we provide some more details on SU(3) and

SU(2)-structures and their transformation rules under non-Abelian T-duality. In section

– 3 –



J
H
E
P
0
8
(
2
0
1
3
)
0
1
8

4 we look at examples of the T-dual of the un-flavoured Klebanov-Witten model studied

in [7, 8] and explicitly construct its SU(2)-structure. In section 5 we present the flavoured

Klebanov-Witten model and its T-dual.

2 Non-abelian T-duality

In this section we present some useful overview of non-Abelian T-duality, a comprehensive

treatment may be found in [8].

The three-step Buscher procedure of gauging a U(1) isometry, enforcing a flat con-

nection for the corresponding gauge field with a Lagrange multiplier, and integrating out

these Lagrange multipliers provides a powerful way to construct a T-dual σ-model. This

approach can be readily generalised to the case of non-Abelian isometries and provides a

putative non-Abelian T-duality transformation. Unlike its Abelian counter part, this non-

Abelian T-duality typically destroys the isometries dualised (though they can be recovered

as non-local symmetries of the string σ-model [30]). Due to global complications, it is

thought that this non-Abelian dualisation is not a full symmetry of string (genus) pertur-

bation theory however it remains valid as a solution-generating symmetry of supergravity.

In this regard its status is rather similar to fermionic T-duality [31], which has proven to

be very useful in the context of the AdS-CFT correspondence in providing an explanation

of the scattering amplitude/Wilson loop connection at strong coupling [32].

Let us first consider a bosonic string σ-model in a NS background. We will assume that

this background admits some isometry groupG and that background fields can be expressed

in terms of left-invariant Maurer-Cartan forms, Li = −iT r(g−1dg), for this group. That is

to say the target space metric has a decomposition

ds2 = Gµν(x)dx
µdxν + 2Gµi(x)L

i + gij(x)L
iLj , (2.1)

with corresponding expressions for the NS two-form B and dilaton Φ. The non-linear

σ-model is

S =

∫
d2σ

(
Qµν∂+x

µ∂−x
ν +Qµi∂+x

µLi− +QiµL
i
+∂−x

µ + EijL
i
+L

j
−

)
, (2.2)

where

Qµν = Gµν +Bµν , Qµi = Gµi +Bµi , Qiµ = Giµ +Biµ , Eij = gij + bij , (2.3)

and Li± are the left-invariant forms pulled back to the world sheet. To obtain the dual

σ-model one first gauges the isometry by making the replacement

∂±g → D±g = ∂±g −A±g , (2.4)

in the Maurer-Cartan forms. Also, the addition of a Lagrange multiplier term −iTr(vF+−)

enforces a flat connection.
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After integrating this Lagrange multiplier term by parts, one can solve for the gauge

fields to obtain the T-dual model. Finally, we must gauge fix the redundancy by, for

example, setting g = 1.1

We obtain the Lagrangian,

S̃ =

∫
d2σ

(
Qµν∂+x

µ∂−x
ν +(∂+vi+ ∂+x

µQµi)(Eij + fij
kvk)

−1(∂−vj −Qjµ∂−x
µ)
)
, (2.5)

from which the T-dual metric and B-field can be ascertained. As with Abelian T-duality

the dilaton receives a shift from performing the above manipulations in a path integral

given by

Φ̂(x, v) = Φ(x)− 1

2
ln(detM) (2.6)

where we have defined Mij = Eij+fij
kvk which will play a prominent role in what follows.

Using the equations of motion, one can ascertain the following transformation rules

for the world-sheet derivatives

Li+ = −(M−1)ji (∂+vj +Qµj∂+x
µ) ,

Li− =M−1
ij (∂−vj −Qjµ∂−x

µ) ,

∂±x
µ = invariant .

(2.7)

These relations provide a classical canonical equivalence between the two T-dual σ-

models [30, 33].

The consequence of this is that left and right movers couple to different sets of vielbeins

for the T-dual geometry. Suppose that we define frame fields for the initial metric (2.1) by

ds2 = ηABe
AeB +

dimG∑

i=1

δabe
aeb , eA = eAµ dx

µ , ea = κaiL
i + λaµdx

µ . (2.8)

Then by making use of the transformation rules (2.7) one finds that after T-dualisation

left and right movers couple to the vielbeins

êa+ = −κM−T
(
dv +QTdx

)
+ λdx , êA+ = eA

êa− = κM−1
(
dv −Qdx

)
+ λdx , êA− = eA ,

(2.9)

in which M−T is the inverse transpose of the matrix M defined above. Both these frame

fields define the T-dual target space metric obtained from (2.5) given by

d̂s
2
= ηABe

AeB +
dimG∑

i=1

δabê
a
+ê

b
+ = ηABe

AeB +
dimG∑

i=1

δabê
a
−ê

b
− . (2.10)

Since these frame fields define the same metric they must be related by a Lorentz trans-

formation and indeed

ê+ = Λê− , Λ = −κM−TMκ−1 . (2.11)

1More general gauge fixing choices are allowed and will in fact be exploited in this paper. For details of

these we refer the reader to [8]. In this section we assume the gauge fixing choice of g = 1.
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We note that detΛ = (−1)dimG, this will have the consequence that the dualisation of an

odd-dimensional isometry group maps between type IIA and IIB theories whereas that of

an even-dimensional group preserves the chirality. This Lorentz transformation induces an

action on spinors defined by the invariance property of gamma matrices;2

Ω−1ΓaΩ = ΛabΓ
b . (2.12)

We are particularly interested in performing this duality in supergravity backgrounds

of relevance to the AdS/CFT correspondence which are typically supported by RR fluxes.

Then one ought to, in principle, reconsider the above derivation in a formalism suitable

of including RR fluxes. In the case of Abelian and Fermonic T-duality this has explicitly

been done in the pure spinor approach [34, 35] and a simple extrapolation of these results

to this non-Abelian context leads to the following conclusion which can also be motivated

from the considerations of [36, 37]. The dual RR fluxes are obtained by right multiplication

by the above matrix Ω on the RR bispinor (this can be viewed equivalently as a Clifford

multiplication on the RR polyform/pure spinor). Explicitly, the T-dual fluxes are given

by [2]:

eΦ̂ /̂F = eΦ /F · Ω−1 , (2.13)

where the RR polyforms are defined by

IIB : F =
4∑

n=0

F2n+1 , IIA : F =
5∑

n=0

F2n , (2.14)

and the slashed notation in equation (2.13) indicates that we have converted these poly-

forms to bispinors by contraction with gamma matrices. Here we are working in the demo-

cratic formalism in which all ranks of fluxes are considered as independent and Hodge

duality implemented by hand afterwards.3

For many applications knowledge of the transformation laws for the gauge-invariant

field strengths is sufficient. However, in some applications we will also be interested on

how the RR potentials themselves transform. We define potentials as

IIB : C =
4∑

n=0

C2n , IIA : C =
4∑

n=0

C2n+1 , (2.15)

related to the field strengths by

IIB : F = (d−H∧)C . IIA : F = (d−H∧)C+meB , (2.16)

in which m is the Romans mass parameter of type IIA. Actually we will need to be a bit

more general than this when we consider the addition of sources, see appendix C.

2Unfortunately, the existing notation in the literature means we have the same symbol Ω for the spinorial

transformation matrix and for the SU(3)-structure three-form. We trust the reader will infer from the

context which is meant.
3See the appendices for details of the conventions used.
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We propose that the potentials so defined have a straightforward transformation rule:

eΦ̂ /̂C = eΦ /C · Ω−1 . (2.17)

We should comment briefly about a subtlety; the potentials in the equation above have to

be chosen in such a way that the T-duality can be readily performed. In other words, for the

transformation rule to be as above, the potentials Cp should have a vanishing Lie derivative

along the Killing vectors of the isometry dualised. A less judicious choice of potentials would

require composing the above transformation law with an appropriate gauge transformation

that first brings the potential into the desired form (this is well explained in [16] for the

NS two-form potential which need not have a vanishing Lie derivative under the isometry

dualised but instead obey LkB = dξ).

Although we have not shown that (2.17) implies (2.13) in all generality, we find that

it does indeed generate the correct transformation in the case at hand. The essential step

in a general proof would be to show that the Clifford multiplication implied by the spinor

contraction in (2.17) commutes with the action of the twisted differential dH . One may

be confident that this is true in all generality since this is indeed the case with Abelian

T-duality [16] and we shall see that in a certain basis the transformation rules do become

very similar to the Abelian case.

We end this section by remarking the status of supersymmetry under non-Abelian T-

duality. Supersymmetry need not be preserved by T-duality (Abelian or not).4 Whether

(and how much) supersymmetry is preserved depends on how the Killing vectors about

which we dualise act on the supersymmetry. The action of a vector on a spinor, which is

only well defined when the vector is Killing, is given by [38–40]

Lkǫ = kµDµǫ+
1

4
∇µkνγ

µνǫ . (2.18)

If, when acting on the Killing spinor of the initial geometry, this vanishes automatically for

all the Killing vectors that generate the action of G then we anticipate supersymmetry to be

preserved in its entirety. If on the other hand this vanishes only for some projected subset of

Killing spinors then we expect only a corresponding projected amount of supersymmetry to

be preserved in the T-dual.5 In this paper we consider the case of N = 1 supersymmetry

which is invariant under the above action of G so that the non-Abelian duality should

preserve supersymmetry. Suppose we start with ten-dimensional MW Killing spinors ǫ1

and ǫ2, then the Killing spinors in the T-dual will be given by

ǫ̂1 = ǫ1 , ǫ̂2 = Ω · ǫ2 . (2.19)

3 G-structures and their transformations

We now give a brief summary of the important details concerning G-structures. We follow

the conventions of [25] except where indicated otherwise. We consider ten-dimensional

4In principle, supersymmetry can even be enhanced by T-duality but given that non-Abelian T-duality

destroys isometry this seems rather unlikely in this case.
5In [4] this was confirmed to be true in general for a large class of backgrounds.
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backgrounds consisting of a warped product of four-dimensional Minkowski space and a

six-dimensional internal manifold M :

ds210 = e2Ads21,3 + ds2(M) . (3.1)

Since we require N = 1 supersymmetry there should exist a single four-dimensional con-

served spinor. The ten-dimensional MW spinors of type II supergravity are decomposed as

ǫ1 = ζ+ ⊗ η1+ + ζ− ⊗ η1− ,

ǫ2 = ζ+ ⊗ η2∓ + ζ− ⊗ η2± ,
(3.2)

where the upper sign in ǫ2 corresponds to IIA and the lower to IIB — here ± denotes both

four and six-dimensional chiralities and we choose a basis such that (η+)
∗ = η−. From the

internal spinors we define two Cliff(6, 6) pure spinors (or polyforms):

Ψ± = η1+ ⊗ (η2±)
† . (3.3)

We define the norms of the internal spinors ||η1||2 = |a|2 and ||η2||2 = |b|2. The dilatino

and gravitino equations can be recast succinctly, for the type IIA case, as

e−2A+Φ(d+H∧)
[
e2A−ΦΨ−

]
= dA ∧ Ψ̄− +

eΦ

16

[(
|a|2−|b|2

)
FIIA,−+ i

(
|a|2+|b|2

)
⋆6 FIIA,+

]
,

(d+H∧)
[
e2A−ΦΨ+

]
= 0 .

(3.4)

The RR fluxes entering on the right-hand side of this equation are defined for the type

IIA case as

FIIA,− = F0 − F2 + F4 − F6, FIIA,+ = F0 + F2 + F4 + F6. (3.5)

Similar expressions hold in the case of type IIB after exchanging Ψ+ ↔ Ψ− and

FIIA ↔ FIIB, see [10] and [25] for details.

Two important extreme cases are when the internal spinors are always parallel (cor-

responding to SU(3)-structure) and when they are nowhere parallel (that corresponds to

SU(2)-structure). In the first case there is a single spinor of unit norm such that η1+ = aη+,

η2+ = bη+. The spinor bilinears then define a two-form and a complex three-form with

components

Jmn = − i

|a|2 η
1†
+ γmnη

1
+ , Ωmnp = − i

a2
η1†− γmnpη

1
+ . (3.6)

These are normalised such that J3 = 3i
4 Ω∧ Ω̄ and obey J ∧Ω = 0. The corresponding pure

spinors are

SU(3) structure : Ψ+ =
ab∗

8
e−iJ , Ψ− = − iab

8
Ω . (3.7)

In the second case when the spinors are nowhere parallel we have a non-vanish complex

vector field defined by η1+ = aη+, η
2
+ = b(vi+ iwi)γiη−. In this case one can show that the

corresponding pure spinors have the form

SU(2) structure : Ψ+ =
ab∗

8
e−iv∧w ∧ ω , Ψ− =

ab

8
e−ij ∧ (v + iw) . (3.8)
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We can express the forms v, w, ω and j directly in terms of the spinors (see for example [29]):

vm − iwm = − 1

ab
η2†− γmη

1
+ ,

ωmn =
i

ab∗
η2†+ γmnη

1
+ ,

jmn =
i

2|b|2 η
2†
+ γmnη

2
+ − i

2|a|2 η
1†
+ γmnη

1
+ .

(3.9)

To ascertain the non-Abelian T-dual of these structures one can work explicitly with

the T-dual Killing spinors defined in equation (2.19) and construct from first principles the

pure-spinors Ψ± defined above. Alternatively, for the spinor-phobic one can circumvent

this by using the following transformation rules on the polyforms

/Ψ
SU(2)
+ = i /Ψ

SU(3)
− Ω−1 , /Ψ

SU(2)
− = /Ψ

SU(3)
+ Ω−1 . (3.10)

The D-brane generalised calibrations follow from this as shown in appendix B.

Let us just remark at this stage that the condition of supersymmetry being preserved as

detailed in equation (2.18) simply translates (using the Liebniz derivation property obeyed

the Lorentz-Lie derivative [38–40]) into the invariance of the pure-spinors under the regular

Lie derivative acting on forms:

Lkǫ = 0 ⇒ LkΨ± = 0 . (3.11)

For the case of the abelian T-duality one can show that this criteria does indeed ensure

that supersymmetry is preserved after T-duality [16]. The essence of the proof is that up

to terms proportional to this Lie derivative, the twisted differential dH commutes with the

Clifford multiplication rule (cf. equation (3.10)) used to extract the T-dual pure spinors.

Using this, one can infer that supersymmetry is preserved by the dualisation. Although

we have not verified the details the situation here appears to be exactly analogous, indeed

as we shall shortly see one can find a basis in which the non-Abelian T-duality essentially

mimics the Abelian case.

In the following sections, we will consider two examples that will make clear var-

ious points discussed above. The first case-study will be the non-Abelian T-dual of the

Klebanov-Witten system as presented in [7, 8]. We will explicitly show the SU(2)-structure

of the solution (and hence its SUSY preservation). We will then consider the background

obtained by adding fundamental fields (quarks) to the Klebanov-Witten field theory [41]

(conversely, we will consider the addition of source-branes to the Klebanov-Witten back-

ground). With the essential help of the SU(2)-structure formalism

4 Example 1: unflavoured Klebanov-Witten and its T-dual

In this section we shall examine the T-dual of the Klebanov-Witten geometry and explicitly

demonstrate its SU(2)-structure.

The theory living on D3 branes placed at the tip of the conifold was studied by Kle-

banov and Witten in [42]. The gauge theory describing the low-energy dynamics of the
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branes is an N = 1 superconformal field theory with product gauge group SU(N)×SU(N).

It can be described by a two-node quiver and has two sets of bi-fundamental matter fields

Ai in the (N, N̄) representation of the gauge group and Bm in the (N̄ ,N). The indices

i and m correspond to two sets of SU(2) global symmetries. The super potential for the

matter fields is given by

W =
λ

2
ǫijǫmnTr (AiB

mAjB
n) . (4.1)

This gauge theory is dual to string theory on AdS5 × T (1,1) with N units of RR flux

supporting the geometry:

ds2 =
r2

L2
dy21,3 +

L2

r2
dr2 + L2ds2(T (1,1)) ,

F(5) =
4

gsL

(
vol(AdS5)− L5vol(T(1,1))

)
.

(4.2)

We will work with the following frame fields for this geometry

ey
µ

=
r

L
dyµ (µ = 0 . . . 3) , er =

L

r
dr , eϕ = λ1 sin θdϕ , eθ = λ1dθ ,

e1 = λ1σ1 , e2 = λ1σ2 , e3 = λ (σ3 + cos θdϕ) ,
(4.3)

in which λ21 = L2

6 and λ2 = L2

9 and we have introduced SU(2) left-invariant one-forms

parametrised by Euler angles:

σ1 = (− sinψdθ̃ + cosψ sin θ̃dϕ̃), σ2 = (cosψdθ̃ + sinψ sin θ̃dϕ̃), σ3 = (cos θ̃dϕ̃+ dψ).

(4.4)

For reference we state the ten-dimensional spinors of KW in this basis given by

ǫ1 =

√
r

L

(
ζ+ ⊗ η+ + ζ− ⊗ η−

)
, ǫ2 =

√
r

L

(
i ζ+ ⊗ η+ − i ζ− ⊗ η−

)
. (4.5)

The chiralities in these expressions are defined with respect to four and six-dimensional

chirality matrices

γ(4) = i γy
0y1y2y3 , γ(6) = −i γϕθ123r , (4.6)

such that under the ten-dimensional chirality operator Γ(10) = γ(4) ⊗ γ(6) both ǫ1 and ǫ2

are positive. In addition the spinor η+ is constant and normalised such that η†+η+ = 1.

Supersymmetry imposes the following projections on the spinor (as above η+ = (η−)
∗),

γr3η+ = γ12η+ = γϕθη+ = −i η+ . (4.7)

Using these expressions, we can determine the SU(3)-structure of KW in this basis to be

J = eθϕ − e12 + e3r ,

Ω = (e2 + i e1) ∧ (eθ + i eϕ) ∧ (e3 + i er) .
(4.8)

The non-Abelian T-dual of this geometry with respect to the SU(2) global symmetry

defined by the σi was constructed in [7, 8]. The result is an N = 1 supersymmetric
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solution of type IIA whose NS sector is given by6

dŝ2 =ds2AdS5 + λ21(dθ
2 + sin2 θdϕ2) +

λ21λ
2

∆
x21σ̂

2
3

+
1

∆

(
(x21 + λ2λ21)dx

2
1 + (x22 + λ41)dx

2
2 + 2x1x2dx1dx2

)
,

B̂ =− λ2

∆

[
x1x2dx1 + (x22 + λ41)dx2

]
∧ σ̂3 ,

e−2Φ̂ =
8

g2s
∆ ,

(4.9)

where σ̂3 = dψ + cos θdϕ and

∆ ≡ λ21x
2
1 + λ2(x22 + λ41) . (4.10)

The metric evidently has an SU(2) × U(1)ψ isometry and for a fixed value of (x1, x2)

the remaining directions give a squashed three-sphere. This geometry is supported by two

and four-form RR fluxes which may be computed using equation (2.13) and whose explicit

form can be found in [8]. We remark in passing that the lift of this geometry to eleven

dimensions has an interpretation in terms of recently discovered N = 1 SCFT’s obtained

from wrapping M5 branes on a Riemann surface (of genus zero in this case) [9].

One can establish the left and right-moving T-dual frames for this geometry along the

lines of equation (2.9). The frames in the AdS direction are unaltered as are eθ and eϕ.

In the directions dualised we find new frame fields êi± for i = 1 . . . 3. The plus and minus

T-dual frames are related by a Lorentz transformation which, as described in section 2,

induces a transformation on spinors given by,7

Ω =
Γ(10)√

∆

(
− λ21λΓ

123 + λ1x1 cosψ Γ1 + λ1x1 sinψ Γ2 + λx2Γ
3
)
. (4.11)

This defines the Killing spinors of the T-dual to be

ǫ̂1 = ǫ1 , ǫ̂2 = Ω · ǫ2 . (4.12)

Implementing the four-six decomposition one finds from (4.5) using (4.7) that

ǫ̂1 =

√
r

L

(
ζ+ ⊗ η+ + ζ− ⊗ η−

)
,

ǫ̂2 =

√
r

L

(
ζ+ ⊗ η̂2− + ζ− ⊗ η̂2+

)
,

(4.13)

where

η̂2− = − i√
∆

(
λ21λγ

r + λ1x1 cosψ γ
1 + λ1x1 sinψ γ

2 + λx2γ
3
)
η+ , η̂2+ = (η̂2−)

∗. (4.14)

6We have set L = 1 which may be restored by appropriate rescalings. Also in deriving these results the

gauge fixing choice is different to that described in section 2 of this paper. Details may be found in [8].
7The careful reader will not confuse this matrix Ω and its inverse Ω−1 with the complex three-form

defining an SU(3)-structure, that appears for example in equation (4.8).
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It is clear that in this basis, the T-dual Killing spinors depend not only on the radial

coordinate but also on the T-dual coordinates x1, x2. It is helpful to work in a different

basis in which this new spinor can be expressed as simply as possible. In addition, we would

like the new vielbein basis to preserve the geometric structure defined by η+, because ǫ1 is

invariant under the non-Abelian T-duality. To do so we perform a rotation to a new basis

ẽ = Rê (ordered as r, ϕ, θ, 1, 2, 3) with the rotation matrix

R =
1√

1 + ζ.ζ




1 0 0 ζ1 ζ2 ζ3

0
√
1 + ζ.ζ 0 0 0 0

0 0
√
1 + ζ.ζ 0 0 0

−ζ1 0 0 1 −ζ3 ζ2

−ζ2 0 0 ζ3 1 −ζ1
−ζ3 0 0 −ζ2 ζ1 1




(4.15)

with,

ζ1 =
x1 cosψ

λλ1
, ζ2 =

x1 sinψ

λλ1
, ζ3 =

x2
λ21

. (4.16)

Notice that these parameters are reflecting the structure of the spinor transformation ma-

trix Ω. The rotated vielbeins are given, in coordinate frame, by:

ẽr =
λλ21dr − r(x1dx1 + x2dx2)

r
√
∆

, ẽϕ = λ1 sin θ dϕ ,

ẽ1 = λ1
rλ(x1 sinψ σ̂3 − cosψ dx1)− x1 cosψ dr

r
√
∆

, ẽθ = λ1dθ ,

ẽ2 = −λ1
rλ(x1 cosψ σ̂3 + sinψ dx1) + x1 sinψdr

r
√
∆

, ẽ3 = −λx2dr + λ21r dx2

r
√
∆

.

(4.17)

Then in this new basis (in which the gamma matrices are of course also rotated γ̃ = Rγ),

we can easily show that

ǫ̃1 =

√
r

L

(
ζ+ ⊗ η+ + ζ− ⊗ η−

)
,

ǫ̃2 =

√
r

L

(
ζ+ ⊗ η̃2− + ζ− ⊗ η̃2+

)
,

(4.18)

with η̃2+ = (η̃2−)
∗ and,

η̃2− = −i γ̃rη+ . (4.19)

Note that, as required for type IIA supergravity, the new spinors have opposite chirality.

With this simple relation between η̃2− and η+, we clearly see that they are never parallel,

hence we have an SU(2)-structure. Because we were careful about the definition of our

new vielbein basis, the projections on η+ are not modified,

γ̃r3η+ = γ̃12η+ = γ̃ϕθη+ = −i η+ , (4.20)

but the projections obeyed by η̃2− are different

− γ̃r3η̃2− = γ̃12η̃2− = γ̃ϕθη̃2− = −i η̃2− . (4.21)
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The Killing spinors define two different SU(3)-structures

J1 = ẽθϕ + ẽ21 − ẽ3r ,

Ω1 = (ẽ2 + i ẽ1) ∧ (ẽθ + i ẽϕ) ∧ (−ẽ3 + i ẽr) ,

J2 = ẽθϕ + ẽ21 + ẽ3r ,

Ω2 = (ẽ2 + i ẽ1) ∧ (ẽθ + i ẽϕ) ∧ (−ẽ3 − i ẽr) ,

(4.22)

whose intersection is the SU(2)-structure given by

v + iw = −ẽ3 + iẽr ,

j = ẽθϕ + ẽ21 ,

ω = (ẽ2 + i ẽ1) ∧ (ẽθ + i ẽϕ) .

(4.23)

An explicit check shows that these do indeed satisfy the dilatino and gravitino equations

that follow from equation (3.4).

Note that it makes sense to mix er with e1, e2 and e3 when performing the rota-

tion (4.15) because the geometric structure links er and e3 in the projection γr3η+ = −i η+.
Actually the choice of this rotation appears clearer when considering that, because of the

geometric structure, the transformation of the spinor ǫ2 can be written very easily as

Ω ǫ2 = −Γ̃rǫ2. It is in this new basis that the transformation closely resembles the T-

duality of the Abelian case.

5 Example 2: flavoured Klebanov-Witten and its T-dual

An important step if one is to try and use the AdS/CFT paradigm to understand QCD-

like dynamics is to incorporate fundamental flavours (quarks) into the gauge theory and

corresponding gravity descriptions. A first step in this direction is to add a finite number

Nf of fundamental flavours which in the IIB set-up is typically achieved by the inclusion

of a finite number of flavour D7 branes. This is the probe or quenched limit; the colour D3

branes generate the geometry but the flavour branes do not back-react and only minimise

their world-volume (DBI) action without deforming the geometry. Remarkably one can

even work beyond this quenched approximation by allowing a large number of flavour

branes (Nf ∼ Nc) in which case the D7 branes deform the geometry, see [18, 19] for reviews.

In the case at hand we will consider adding Nf D7 branes to the KW geometry in such

a way that supersymmetry is preserved. We first describe the gauge theory engineered

from the D3-D7 system in the conifold. We consider D7 branes parallel to the D3 stack in

the Minkowski directions with the remaining four directions embedded holomorphically and

non-compactly in the conifold. The strings that run between the D7 and the D3 give rise to

massless flavours. To avoid gauge anomalies on the field-theory side of the description and

supergravity tadpoles on the string side of it, one must include two branches of D7 branes

giving rise to fundamental chiral superfields for each gauge group (q, q̃ in the (N, 1) and

(N̄ , 1) andQ, Q̃ in the (1, N) and (1, N̄)). The superpotential for this theory is given by [41],

W =
λ

2
ǫijǫmnTr (AiB

mAjB
n) + h1q̃

aA1Qa + h2Q̃
aB1qa . (5.1)
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Notice that the SU(2) global symmetries are explicitly broken by the embedding of the D7

branes - this symmetry will be recovered by smearing the sources, when we go beyond the

probe limit. The addition of flavours implies that the theory loses conformality; a positive

beta function is generated and a priori one expects a Landau pole in the UV.

We now turn to the gravity description. By considering the κ-symmetry projectors one

can determine that the supersymmetric embeddings of D7 branes in the KW background

to lie along two branches (the yµ denote the Minkowski directions) [41],

ξ = (yµ, r, ψ, S2), ξ̃ = (yµ, r, ψ, S̃2), (5.2)

where S2 and S̃2 are the two-spheres parametrised by θ, ϕ and θ̃, ϕ̃ respectively. To avoid

the D7 charge tadpole we must include Nf branes on both branches. One can write an

action for the whole system consisting of supergravity together with DBI and WZ terms

of the D7 branes (in string frame)

SDBI = −TD7

∑

Nf

∫

ξ
d8σe−Φ

√
|P [g]| − TD7

∑

Nf

∫

ξ̃
d8σe−Φ

√
|P [g]| ,

SWZ = TD7

∑

Nf

∫
P [C8] ,

(5.3)

where P indicates the pull-back to the appropriate cycle, sometimes also denoted below

as g

∣∣∣∣
ξ

. We do not activate the gauge field on the brane itself and since there is no NS

two-form in this geometry the WZ term is simple. Now we consider the case where the

number of flavour branes goes to infinity in which case they can be smeared. In other words

we consider that each stack is distributed homogeneously across the two-sphere it does not

wrap.8 In a field-theory perspective the U(Nf ) flavour symmetries are broken to their

maximal torus. The supergravity effect can be encoded by introducing a smearing form:

Ξ2 = −Nf

4π

(
sin θdθ ∧ dϕ+ sin θ̃dθ̃ ∧ dϕ̃

)
. (5.4)

The smearing procedure essentially boils down to replacing the DBI and WZ contributions

of equation (5.3) with

SDBI → −TD7

∑

Nf

∫
d10xe−Φ

(
sin θ̃

√
|P [g]|+ sin θ

√
|P [g]|

)
,

SWZ → TD7

∑

Nf

∫
Ξ2 ∧ C8 .

(5.5)

One consequence of this smearing is that the Bianchi identities are modified

dF1 = Ξ2 , dF5 = 0 . (5.6)

8This smearing procedure overcomes the bound on the number of D7 branes that comes from looking

the deficit angle of the D7 solution so Nf may indeed be taken large.

– 14 –



J
H
E
P
0
8
(
2
0
1
3
)
0
1
8

The D7 brane back-reaction is accommodated by the following ansatz (as above we work

in string frame)

ds2=
e

Φ

2√
h
dy21,3 + e

Φ

2

√
h

(
dr2+λ21e

2g(sin2 θdϕ2+dθ2)+λ22e
2g(σ21+σ

2
2)+λ

2e2f (σ3+cos θdϕ)2
)
,

F1=
Nf

4π
(σ3 + cos θdϕ) , F5 = (1 + ⋆)dt ∧ dx1 ∧ dx2 ∧ dx3 ∧Kdr ,

(5.7)

where the warp factors f , g, h and the dilaton Φ are functions of the radial vari-

able r and λ21 = λ22 = 1/6, λ2 = 1/9 and as a consequence of the Bianchi identities

Kh2e4g+f = 27πNc.
9 The σi’s are SU(2) left invariant one-forms defined in equation (4.4).

A convenient basis of vielbeins is given by:

ey
µ

= e
Φ/4h−

1/4dyµ , er = e
Φ/4h

1/4dr ,

eϕ = λ1e
g+Φ/4h

1/4 sin θdϕ , eθ = λ1e
g+Φ/4h

1/4dθ ,

e1 = λ1e
g+Φ/4h

1/4σ1 , e2 = λ1e
g+Φ/4h

1/4σ2 ,

e3 = λh
1/4ef+

Φ/4(σ3 + cos θdϕ) .

(5.8)

Like the unflavoured version, this solution supports an SU(3)-structure:

J = −
(
er3 + eϕθ + e12

)
= −4π

√
h

3Nf
e

Φ

2

(
1

2
e2gΞ2 + efdr ∧ F1

)
,

Ω = (e2 + ie1) ∧ (eθ + ieϕ) ∧ (e3 + ier).

(5.9)

With these and the structure conditions for SU(3) it is possible to derive a set of first

order BPS equations for the various functions introduced thus far:

f ′ = e−f (3− 2e2f−2g)− 3Nf

8π
eΦ−f , g′ = ef−2g , (5.10)

h′ = −27πNce
−f−4g , Φ′ =

3Nf

4π
eΦ−f .

The RR potentials can be expressed in terms of the SU(3)-structure forms as:

C8 = −1

2
e−Φ

(
eΦ

h
vol4

)
∧ J ∧ J , C4 = e−Φ

(
eΦ

h
vol4

)
, (5.11)

where F9 = ⋆F1. The reason why we did not cancel both factors of the dilaton is just for

comparison with formulas below.

Finally for the brane embedding to be supersymmetric it must obey the calibration

condition:

√
−gξd8ξ = −1

2

(
eΦ

h
vol4

)
∧ J ∧ J

∣∣∣∣
ξ

;
√
−gξ̃d8ξ̃ = −1

2

(
eΦ

h
vol4

)
∧ J ∧ J

∣∣∣∣
ξ̃

; (5.12)

9The unflavoured Klebanov-Witten can be recovered with the following:

y
µ →

1
√
gs

y
µ
, Nf = 0 , h =

L4

gsr4
, e

2f = e
2g = r

2
, K =

4r3gs
L4

, e
Φ = gs .
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where ĝξ is the induced metric on ξ whilst

∣∣∣∣
ξ

indicates the pull back onto ξ, and similarly for

ξ̃. This allows the DBI and WZ actions of the smeared brane embedding to be expressed as:

SDBI =
1

2

∫

M10

e−Φ

(
eΦ

h
vol4

)
∧ J ∧ J ∧ Ξ2 , SWZ =

∫

M10

C8 ∧ Ξ2 , (5.13)

from which it is immediate that SDBI + SWZ = 0, as required by SUSY. As the sources

are calibrated the dilaton equation of motion, Einstein’s equations and the flux equation

for H are all satisfied once the Bianchi identities are imposed. This is proved for any

SU(3)× SU(3)-structure background in [26].

We will now find the non-Abelian T-dual of this system involving metric, fluxes and

sources. The interest of this problem is two-fold. On the one hand, it teaches us the effect

of the non-Abelian duality on the Born-Infeld-Wess-Zumino action. On the other hand, it

will tell us how to find the new smearing forms. Both these points give clues to a generic

procedure.

5.1 The T-dual

We perform the non-Abelian T-duality along the SU(2) directions as before. To compactly

display the results it is convenient to perform a supplementary rotation as detailed in

equation (3.21) of [8]. We find the frame fields for the T-dual metric to be

ê1 = −λ1
∆
eg+

Φ

4 h
1/4

(
(λ21λ

2he2f+2g+Φ + x21)dx1 + x1x2(dx2 + λ2
√
he2f+

Φ

2 σ̂3)
)
,

ê2 =
λ1
∆
eg+

3

4
Φh

3/4
(
λ2x2e

2fdx1 − λ21x1e
2g(dx2 + λ2

√
he2f+

Φ

2 σ̂3)
)
, (5.14)

ê3 = − λ

∆
ef+

Φ

4 h
1/4

(
x1x2dx1 + (λ41he

4g+Φ + x22)dx2 − λ21
√
hx21e

2g+Φ

2 σ̂3

)
.

Where we recall σ̂3 = cos θdφ+ dψ and

∆ =
√
he

Φ

2

(
λ41λ

2he2f+4g+Φ + λ21x
2
1e

2g + λ2x22e
2f
)
. (5.15)

The T-dual NS sector is then given by

dŝ2 = (eyµ)2 + (er)2 + (eϕ)2 + (eθ)2 + (ê1)2 + (ê2)2 + (ê3)2 ,

B̂ =
λef−gx2
λ1x1

ê13 +
λλ1e

f+g+Φ

2

√
h

x1
ê23 ,

H = dB̂ ,

e−2Φ̂ = 8∆e−2Φ .

(5.16)

This geometry is supported by RR fluxes, obtained using the general formula equa-

tion (2.13),

F0 =
Nf√
2π
x2 ,

F2 =
λ1e

g−f−Φ

2√
2λπ

(
4πλ1λ

2Ke2f+gh
3/2eϕθ + λλ1Nfe

f+g+Φ
√
hê12 − x1Nfe

Φ

2 ê13
)
,

F4 = −2
√
2e−ΦhKeϕθ ∧

(
λx2e

f ê12 + λ1x1e
g ê23

)
.

(5.17)
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Although there is an F0, it is possible that one should not regard this as a solution of Massive

IIA — the would-be mass parameter is neither constant nor quantised— but rather, as we

shall discuss, this should be thought of as a solution to type IIA in the presence of D8

sources. Now since the original Bianchi identities were not satisfied (due to D7 source) one

would not expect these new fluxes in equation (5.17) to obey standard Bianchi identities

after the non-Abelian T-duality. Indeed, one finds T-dual smearing forms enter the game

dF0 = Ξ1 ,

dF2 − F0H = Ξ1 ∧B + Ξ3 ,

dF4 −H ∧ F2 =
1

2
Ξ1 ∧B ∧B +B ∧ Ξ3 .

(5.18)

We find a rather nice result: the T-dual smearing forms can be calculated directly as

Ξ1 = − Nfe
−g−Φ

4√
2πλ1h

1/4

(
x1ê

2 + λλ1
√
hef+g+

Φ

2 ê3
)
=

Nf√
2π
dx2 ,

Ξ3 =
Nfe

−2g−Φ

4

πh1/4
eϕθ ∧

(√
3x1e

g ê1 +
√
2x2e

f ê3
)

(5.19)

=
Nf√
2π

sin θ (x1dθ ∧ dϕ ∧ dx1 + x2dθ ∧ dϕ ∧ dx2) .

These may be obtained equally using a transformation rule much like that of the RR fields,

eΦ/Ξ2Ω
−1 = eΦ̂ /̂ΞB , (5.20)

where Ξ̂B = eB ∧ (Ξ1 + Ξ3). The active smearing forms indicate sources for both D6 and

D8 branes.

5.2 A nice subtlety

There is a subtlety here. A naive reasoning would lead us to believe that when the non-

Abelian T-dual is applied to D7 sources, it will generate charge for D8, D6, D4 branes,

whilst in equation (5.19) we only have D8, D6 charges, since Ξ5, the smearing form for D4

charges is absent in equation (5.18). Below, we will solve this apparent contradiction.

If we consider the Bianchi identity of the RR polyform

dF −H ∧ F = Ξ̂ ∧ eB , (5.21)

it is clear that since the l.h.s. of this equation is gauge invariant the r.h.s. must also

be. Throughout this note we have set to zero gauge fields on the world-volume however

one should remember that they occur in conjunction with the NS two-form in the gauge-

invariant combination F = B+2πα′dA. Then the most conservative view is that performing

a gauge transformation on the NS B-field simply activates appropriate compensating world-

volume gauge field. There is however another point of view which is to keep the world-

volume gauge fields turned off and instead compensate for a B-field transformation with

an appropriate redefinition of the smearing form Ξ̂. This is best thought of not as a gauge

transformation but rather as a mapping. In this picture the transformation of the NS
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potential, B → B + ∆B, mediates a redistribution of source charge between the D4 and

D6 branes. The reason to prefer this second viewpoint is that turning on a one-form gauge

field on the brane would break either the SU(Nf ) or the U(1)Nf symmetry.

To explain this second viewpoint, we consider the transformation B → B′ = B +∆B.

Such a transformation must be supplemented by a transformation of the smearing polyform

Ξ̂ → Ξ̂′ so that the Bianchi identity of the RR polyform is unchanged. This requires that

Ξ̂′ ∧ eB′

= Ξ̂ ∧ eB . (5.22)

As an example, consider a transformation for which Ξ1 ∧∆B = 0. Then we still have

dF0 = Ξ1, dF2 −HF0 = Ξ3 +B ∧ Ξ1 . (5.23)

The final Bianchi identity of the RR sector then becomes

dF4 −H ∧ F2 = Ξ5 +B ∧ Ξ3 +
1

2
B ∧B ∧ Ξ1 , (5.24)

where Ξ5 = ∆B ∧ Ξ3. So we generate an explicit source for D4 branes under such a

transformation. Clearly there are always source D8 branes but whether we have explicit

source D6’s or source D6 and D4’s is a gauge-dependent statement. We do not believe

it is possible to find a gauge in which we only have explicit D8 sources. This appears to

be related to the fact that the original type IIB D7 brane embedding has two branches.

This may seem rather mysterious, however one should understand that the total DBI and

WZ actions of the source branes depend only on the sources through the gauge-invariant

quantity Ξ∧eB. The higher potentials in the WZ action, C5, C7 and C9, are gauge invariant

as consequence of the SU(2) SUSY conditions (see appendix B for details on this). So, it

is only the ‘portion’ of the sources that are viewed as being explicit rather than induced

that changes, the equations of motion, the Bianchi identities and the total Maxwell charge

are all invariants.

In summary, we advocated a picture in which gauge transformations mediate a redis-

tribution of the source charge between the D4 and D6 branes. This could be thought of as

an ‘inverse’ of the Myers effect.

To emphasize these points above, we can consider their Page charges [43] defined as

QD6
page =

∫

M2

(F2 − F0B) ,

QD4
page =

∫

M4

(F4 −B ∧ F2 +
1

2
F0B ∧B) .

(5.25)

The Maxwell charges are invariant under a shift in the B-field described above. While the

shift of the Page charges is given by

∆QD6
page =

∫

M2

F0∆B ,

∆QD4
page =

∫

M4

(−∆B ∧ (F2 − F0B) +
1

2
F0∆B ∧∆B) .

(5.26)
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As these integrals are defined over compact manifolds these quantities are invariant for

small gauge transformations. The integrands are exact so the integrals are zero. It is of

course a generic feature of Page charges that they are only defined up to quantised shifts

under large gauge transformations.10 This is generally interpreted in the literature as a

Seiberg duality in the dual gauge theory as in [41].

5.3 Potentials, SU(2)-structure and calibration

We may use the formula for the T-dual RR potential in equation (2.17) to find the RR

potentials. These are given in coordinate frame by (for alternative expressions see below)

C5 = e−Φ̂

(
eΦ

h
vol4

)
∧
(
λλ21e

f+2g+Φhdr − (x1dx1 + x2dx2)√
∆

)
,

C7 = e−Φ̂

(
eΦ

h
vol4

)
∧
(
λ21e

2g+Φh sin θdθ ∧ dϕ ∧ (λefx2dr + λ21e
2gdx2)√

∆
+

λλ21x1e
f+2g+ 3Φ

2 h
3

2 (λ21e
2g(x1dr ∧ dx2 + λefdx1 ∧ dx2)− λ2e2fx2dr ∧ dx1) ∧ σ̂3

∆3/2

)
,

C9 = e−Φ̂

(
eΦ

h
vol4

)
∧
(
λλ41e

f+4g+ 3Φ

2 x1h
3

2 sin θdθ ∧ dϕ ∧ σ̂3
)
∧

(
(hλ2λ21e

2f+2g+Φ + x21)dr ∧ dx1 + x1x2dr ∧ dx2 + λefx2dx1 ∧ dx2
∆3/2

)
.

(5.27)

This background is again of SU(2)-structure where the defining forms v + iw, j, ω are the

same as in the unflavoured case — see equations (4.23) — the only difference being that

the parameters entering the rotation matrix used in equation (4.15) become

ζ1 =
e−f−g−

Φ

2 x1 cosψ

λλ1
√
h

; ζ2 =
e−f−g−

Φ

2 x1 sinψ

λλ1
√
h

; ζ3 =
e−2g−Φ

2 x2

λ21
√
h

. (5.28)

This rotation leads to the following simple vielbeins for the dual geometry

ẽr =
hλλ21e

f+2g+Φdr − (x1dx1 + x2dx2)√
∆

, ẽϕ = h
1

4λ1e
g+Φ

4 sin θdϕ, ẽθ = h
1

4λ1e
g+Φ

4 dθ ,

ẽ1 =
√
hλ1e

g+Φ/2−x1 cosψ , dr − efλ(cosψ dx1 − x1 sinψ σ̂3)√
∆

,

ẽ2 = −
√
hλ1e

g+Φ/2x1 sinψ dr + efλ(sinψ dx1 + x1 cosψ σ̂3)√
∆

,

ẽ3 = −
√
he

Φ

2

λefx2dr + λ21e
2gdx2√

∆
.

(5.29)

This whole background is indeed a solution to the combined (massive)-IIA supergravity

plus DBI plus WZ action (the details are explicit in appendix C):

S = SMassive IIA + SDBI + SWZ . (5.30)

10Large gauge transformations are topological in nature and always induce quantised shifts.
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In the gauge in which the B-field is given by equation (5.16) and there are no explicit D4

sources, the appropriate WZ terms are given by

SWZ = SD8
WZ + SD6

WZ ,

SD6
WZ =

∫

M10

(
C7 −B ∧ C5

)
∧ Ξ3 , (5.31)

SD8
WZ = −

∫

M10

(
C9 −B ∧ C7 +

1

2
B ∧B ∧ C5

)
∧ Ξ1 ,

whilst the DBI action, expressed in terms of the D8 and D6 calibrations — cf. (5.13) — is

given by

SDBI = SD8
DBI + SD6

DBI ,

SD6
DBI = −

∫

M10

e−Φ̂

(
eΦ

h
vol4

)
∧
(
v1 ∧ j2 − w1 ∧B

)
∧ Ξ3,

SD8
DBI = −

∫

M10

e−Φ̂

(
eΦ

h
vol4

)
∧
(
1

2
w1 ∧ j2 ∧ j2 + v1 ∧ j2 ∧B − 1

2
w1 ∧B ∧B

)
∧ Ξ1.

(5.32)

Operating with the SU(2) structure we can recast the RR potentials as

C5 = e−Φ̂
(eΦ
h
vol4

)
∧ w1 ,

C7 = e−Φ̂
(eΦ
h
vol4

)
∧ j2 ∧ v1 ,

C9 = −1

2
e−Φ̂

(eΦ
h
vol4

)
∧ j2 ∧ j2 ∧ w1 .

(5.33)

This makes it clear that on shell, as is required by sypersymmetry, SDBI +SWZ = 0. This

reflects the fact that the branes are calibrated, a fact that we now discuss in some detail.

5.4 Analysis of the dualised geometry

One is often interested, particularly in the context of the AdS/CFT correspondence, in

the possibility that D-branes may wrap certain submanifolds of the geometry in a way

that preserves supersymmetry. One approach to check whether a brane embedding is

supersymmetric is to look carefully at the κ-symmetry projectors. An alternative approach

is the use of calibrations. We recall that a calibration ̟ is a closed l-form that bounds the

volume of any oriented l-dimensional submanifold Σ by

dlσ
√
det g|Σ ≥ ̟|Σ . (5.34)

A submanifold is said to be calibrated when this bound is saturated and it follows that such

a calibrated cycle will have the minimal volume within its homology class. Of course in

the geometries described above we have both NS and RR fluxes and this simple calibration
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is not enough to establish supersymmetric D-brane configurations. For this one needs a

generalised calibration, ̟ which is a dH = d+H∧ closed polyform such that for any D-brane

with world-volume field strength F = B|Σ+2πα′dA wrapping an internal cycle Σ, one has

E ≥ ̟|Σ ∧ eF , (5.35)

where E is the energy density of the D-brane. When this bound is saturated the D-brane

minimises its energy and is supersymmetric. SU(3)×SU(3) backgrounds admit a rich struc-

ture of supersymmetric cycles and the polyforms Ψ± (or rather the appropriate imaginary

parts) serve as generalised calibrations as detailed by Martucci and Smyth in [25].

For the case of SU(2)-structure backgrounds with non-trivial NS three-form the cal-

ibrations for odd cycles are given by (and here we assume no gauge field on the brane

world-volumes)11

ΨCal odd = −8h
1

4 e−
Φ

4 Im(Ψ−) ∧ eB , (5.36)

while those for the even cycles by

ΨCal even = −8h
1

4 e−
Φ

4 Im(Ψ+) ∧ eB , (5.37)

where the pure spinors are given by equation (3.8) for |ab| = eA = e
Φ
4

h
1
4

. Specifically

this gives:

C1 = −w1 ,

C2 = −Re(ω2) ,

C3 = v1 ∧ j2 − w1 ∧B ,
C4 = −v1 ∧ w1 ∧ Im(ω2)−B ∧ Re(ω2) ,

C5 =
1

2
w1 ∧ j2 ∧ j2 + v1 ∧ j2 ∧B − 1

2
w1 ∧B ∧B ,

C6 = −v1 ∧ w1 ∧ Im(ω2) ∧B − 1

2
Re(ω2) ∧B ∧B.

(5.38)

A cycle in the internal space is supersymmetric if it satisfies the calibration condition

√
gi +Bdiξ = Ci . (5.39)

One can explicitly check that space-time filling D4, D6 and D8 branes wrapping the

following cycles are indeed supersymmetric:

ΣD4 = (yµ, r) with x1 = x2 = 0 ,

ΣD6 = (yµ, r, ψ, x1) with x21 + x22 = const ,

ΣD8 = (yµ, r, ψ, θ, ϕ, x1) .

(5.40)

We leave the task of finding other supersymmetric cycles for future work.

11Here we give calibrations for cycles defined on the internal space, an additional warp factor is required

if the submanifold under consideration includes the space-time directions as in equation B.14.
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6 Discussion and conclusions

In this work we have clarified the action of non-Abelian T-duality in the context of back-

grounds possessing SU(3)× SU(3) structure and N = 1 supersymmetry.

We saw that rather generically the effect of performing a dualisation along an SU(2)

isometry group is to map an SU(3)-structure background to an SU(2)-structure back-

ground. Such geometries remain an interesting sector of compactifications which are much

less well explored than their IIB SU(3)-structure cousins. Our work then opens the door

to constructing a rich class of such geometries. Indeed although we have illustrated this

work with the Klebanov-Witten geometry, everything we have said holds true for the wide

variety of N = 1 backgrounds presented in [8] (details and extensions of this will appear

in forthcoming work). A particularly noteworthy direction is to consider the dualisation of

more general toric Calabi-Yau geometries [44].

One feature of the geometries presented above was that they possess static SU(2)-

structure (that is the pure spinors are of type (2,1) everywhere). An interesting question

from the point of view of generalised complex geometry is whether backgrounds with a

dynamic SU(2)-structure can be found using these techniques. For this to be the case one

would have to substantially change the relationship between the isometry group dualised

and the initial complex structure.

Establishing a clear dictionary between the geometries [8] discussed in this note and a

dual field theoretic description remains the most pressing physical question. In this note we

showed how to readily add flavour branes to the picture and this will provide further insight

into any putative dual field theoretic description. Indeed, the geometrical approach we

started developing in this paper could extend with interesting subtleties to the Klebanov-

Strassler baryonic branch solution (including the wrapped D5 system). This viewpoint

will make clear the way to calculate some physical observables, like domain walls and other

topological defects corresponding to branes wrapping calibrated sub-manifolds. On the

other hand, it is likely that this geometric view might help address important questions,

like the periodicity of the new coordinates x1, x2, the existence of different cycles on which

to integrate fluxes, a clear interpretation of the background in terms of color/flavor branes,

etc. All these points remain for future study. A long but somewhat clear path needs be

travelled, to use the Maldacena Conjecture and define strongly coupled field theories based

on these backgrounds.
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A Supergravity without sources: conventions

We start by defining the Hodge star operator such that

⋆ ⋆F2n+1 = F2n+1, ⋆ ⋆F2n = −F2n. (A.1)

The action of type-IIB without sources is given in string frame by

SIIB =

∫

M10

√−g
[
e−2Φ

(
R+ 4(∂Φ)2 − H2

12

)
− 1

2

(
F 2
1 +

F 2
3

3!
+

1

2

F 2
5

5!

)]

− 1

2
(C4 ∧H ∧ dC2) .

(A.2)

The fluxes can be conveniently defined as:

H = dB, F1 = dC0, F3 = dC2 −H ∧ C0, F5 = dC4 −H ∧ C2. (A.3)

These imply the following set of Bianchi identities (remind that there are no sources in the

present section):

dH = 0, dF1 = 0, dF3 −H ∧ F1 = 0,

dF5 −H ∧ F3 = 0.
(A.4)

The dual fluxes, related by the expression F2n+1 = (−)n ⋆ F9−2n, are defined as:

⋆ F5 = F5, F7 = dC6 −H ∧ C4, F9 = dC8 −H ∧ C6 , (A.5)

and the fluxes have the following equations of motion:

d ⋆ F1 +H ∧ ⋆F3 = 0, d ⋆ F3 +H ∧ F5 = 0. (A.6)

We can compactly express this in terms of the type IIB RR polyform as:

FIIB = dCIIB −H ∧ CIIB, (A.7)

where CIIB = C0 + C2 + C4 + C6 + C8. This has the combined Bianchi identity

dFIIB = H ∧ FIIB. (A.8)

The action of (massive) type IIA in string frame without sources is given by

SMassive IIA =

∫

M10

√−g
[
e−2Φ

(
R+ 4(∂Φ)2 − H2

12

)
− 1

2

(
F 2
0 +

F 2
2

2
+
F 2
4

4!

)]

− 1

2

(
dC3 ∧ dC3 ∧B +

F0

3
dC3 ∧B3 +

F 2
0

20
B5

)
.

(A.9)
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The fluxes can be best expressed as

F0 = m, F2 = dC1 + F0B, F4 = dC3 −H ∧ C1 +
F0

2
B ∧B; (A.10)

where m is a supergravity mass term. This leads to the following Bianchi identities

dF0 = 0, dF2 − F0H = 0, dF4 −H ∧ F2 = 0 . (A.11)

The dual fluxes, related by the expression F2n = (−)n ⋆ F10−2n, are defined as:

F6 = dC5 −H ∧ C3 +
F0

3!
B3, F8 = dC7 −H ∧ C5 +

F0

4!
F0B

4,

F10 = dC9 −H ∧ C7 +
F0

5!
B5.

(A.12)

The flux equations of motion are:

d ⋆ F2 +H ∧ ⋆F4 = 0, d ⋆ F4 +H ∧ F4 = 0. (A.13)

We can express this information in terms of the type IIA RR polyform as:

FIIA = dCIIA −H ∧ CIIA + F0e
B, (A.14)

where CIIA = C1 + C3 + C5 + C7 + C9. This has the combined Bianchi identity:

dFIIA = H ∧ FIIA. (A.15)

In appendix C, we will give expressions for the fluxes and their Bianchi identities in the

presence of sources.

B On SU(2)-structures in six dimensions

In this section, we give further details regarding the SU(2)-structure that are used through

out the main body of this text. We sketch the derivation of the conditions that the SU(2)-

structure must satisfy for N = 1 SUSY in type IIA. We will also use these to define

potentials for the space-time filling RR-fluxes and the calibrations for space-time filling

D4, D6 and D8 branes. We assume a string frame metric of the form:

ds2 = e2Ady1,3 + ds26 (B.1)

with a dilaton Φ and a NS three form H = dB. We further assume that Φ(z), A(z) with z

any coordinate in ds26. Expanding out the SU(2) pure spinors in (3.8) gives:

Ψ+ =
|ab|
8

[
ω2 − iω2 ∧ v1 ∧ w1 −

1

2
ω2 ∧ v1 ∧ w1 ∧ v1 ∧ w1

]
,

Ψ− =
|ab|
8

(1− ij2 −
1

2
j2 ∧ j2) ∧ (v1 + iw1) ,

Ψ̄− =
|ab|
8

[
v1 − iw1 + j2 ∧ (w1 + iv1)−

1

2
j2 ∧ j2 ∧ (v1 − iw1)

]
.

(B.2)
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Supersymmetry requires that |a| = |b|, we define:

|ab| = |a|2 = eA . (B.3)

Plugging (B.2) into (3.4), equating forms with equal number of legs and separating real

and imaginary parts gives

d
[
e3A−Φω2

]
= 0 ,

d
[
e3A−Φω2 ∧ v1 ∧ w1

]
+ ie3A−ΦH ∧ ω2 = 0 .

(B.4)

For two-forms,

d
[
e3A−Φv1

]
− e3A−ΦdA ∧ v1 = 0 ,

d
[
e3A−Φw1

]
+ e3A−ΦdA ∧ w1 = −e3A ⋆6 F4 .

(B.5)

For four-forms,

−d
[
e3A−Φj2 ∧ w1

]
− e3A−ΦH ∧ v1 + e3A−ΦdA ∧ j2 ∧ w1 = 0 ,

d
[
e3A−Φj2 ∧ v1

]
− e3A−ΦH ∧ w1 + e3A−ΦdA ∧ j2 ∧ v1 = e3A ⋆6 F2 ,

(B.6)

while for the six-form,

−1

2
d
[
e3A−Φj2 ∧ j2 ∧ v1

]
+ e3A−ΦH ∧ j2 ∧ w1 +

1

2
e3A−ΦdA ∧ j2 ∧ j2 ∧ v1 = 0 ,

1

2
d
[
e3A−Φj2 ∧ j2 ∧ w1

]
+ e3A−ΦH ∧ j2 ∧ v1 +

1

2
e3A−ΦdA ∧ j2 ∧ j2 ∧ w1 = e3A ⋆6 F0 .

(B.7)

Finally, we have for the zero-form

⋆6 F6 = 0 (B.8)

where the fluxes F0, F2 and F4 are understood to have legs in the six-dimensional internal

space only. These equations can be further simplified as follows:

d
[
e3A−Φω2

]
= 0

ω2 ∧
[
d
(
v1 ∧ w1

)
+ iH

]
= 0

d
[
e2A−Φv1

]
= 0

d
[
e4A−Φw1

]
= −e4A ⋆6 F4

d
[
e2A−Φj2 ∧ w1

]
+ e2A−ΦH ∧ v1 = 0 (B.9)

d
[
e4A−Φj2 ∧ v1

]
− e4A−ΦH ∧ w1 = e4A ⋆6 F2

1

2
d
[
e2A−Φj2 ∧ j2 ∧ v1

]
− e2A−ΦH ∧ j2 ∧ w1 = 0

1

2
d
[
e4A−Φj2 ∧ j2 ∧ w1

]
+ e4A−ΦH ∧ j2 ∧ v1 = e4A ⋆6 F0

⋆6F6 = 0.
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We clearly now have a definition of the Minkowski space-time filling RR-sector in terms of

the SU(2)-structure:

F6 = d
[
e4A−Φvol4 ∧ w1

]

F8 = d
[
e4A−Φvol4 ∧ j2 ∧ v1

]
− e4A−ΦH ∧ vol4 ∧ w1

F10 = −1

2
d
[
e4A−Φvol4 ∧ j2 ∧ j2 ∧ w1

]
+ e4A−ΦH ∧ vol4 ∧ j2 ∧ v1,

(B.10)

where the remaining fluxes can be obtained from the duality condition F2n = (−)n⋆F10−2n.

With these equations it is possible to derive expressions for the potentials associated with

these fluxes. They take the most compact form when the space-time filling part of the RR

flux ployform is expressed as12

FMink = dCMink −H ∧ CMink . (B.11)

We must have −H ∧ C3 + 1
3!F0B

3 = 0 for N = 1 SUSY, otherwise the final line in

equation (B.9) cannot hold. This allows the derivation of canonical potentials in terms of

the SU(2)-structure,

C5 = e4A−Φvol4 ∧ w1

C7 = e4A−Φvol4 ∧ j2 ∧ v1

C9 = −1

2
e4A−Φvol4 ∧ j2 ∧ j2 ∧ w1.

(B.12)

The calibration for type-IIA space-time filling D branes is defined as

Ψcal = −8e3A−Φ(ImΨ−) ∧ eB, (B.13)

expanding this out and extracting the terms with an equal number of legs gives:

Ψ
(1)
cal = −e4A−Φw1

Ψ
(3)
cal = e4A−Φ

(
v1 ∧ j2 − w1 ∧B

)

Ψ
(5)
cal = e4A−Φ

(
1

2
w1 ∧ j2 ∧ j2 + v1 ∧ j2 ∧B − 1

2
w1 ∧B ∧B

)
.

(B.14)

This makes it clear that an SU(2)-structure in six dimensions can potentially support

Minkowski space-time filling D4, D6 and D8 branes wrapping one, three, and five-cycles

respectively.

C Some details of the flavoured SU(3) and SU(2)-structure solutions

We will start analysing the case of the addition of flavours to the Klebanov-Witten field

theory [41]. This will be explicitly dealt with using the language of SU(3)-structures. Then,

12We are assuming B is defined only on the internal space so that B4 = 0.
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we will extend the analysis to the background generated in section 5. This will require the

full SU(2)-structure formalism, developed above.

We consider the addition of Minkowski space-time filling sources to an SU(3)-structure

background in type-IIB. The action of type-IIB in string frame is modified as:

S = SIIB + SDBI + SWZ . (C.1)

With pure spinors defined as in equation (3.7) the calibration condition is given by:

ΨCal IIB = −8e3A−Φ

(
ImΨ+

)
= e−Φ

(
eΦ

h

)(
1− 1

2
J ∧ J

)
, (C.2)

which is compatible with source D3 and D7 branes. We are assuming, as it is true for the

Klebanov-Witten model with massless flavours, that H = 0. The combined DBI action of

such a system will be given by:

SDBI = SD3
DBI + SD7

DBI ,

SD3
DBI = −

∫

M10

e−Φ

(
eΦ

h

)
vol4 ∧ Ξ6,

SD7
DBI =

1

2

∫

M10

e−Φ

(
eΦ

h

)
vol4 ∧ J ∧ J ∧ Ξ2.

(C.3)

While the WZ terms will be given by:

SWZ = SD3
WZ + SD7

WZ ,

SD3
WZ = −

∫

M10

C4 ∧ Ξ6,

SD7
WZ =

∫

M10

C8 ∧ Ξ2.

(C.4)

The fluxes, in the presence of sources — for the case of B = 0, should be defined as,

H = dB, F1 = dC0, F3 = dC2, F5 = dC4 (C.5)

and the Bianchi identities are modified as follows:

dH = 0, dF1 = Ξ2, dF3 −H ∧ F1 = 0 ,

dF5 −H ∧ F3 = Ξ6 ,
(C.6)

where the Ξi’s that are non zero are determined by the specific source brane content. The

dual fluxes, related by the expression F2n+1 = (−)n ⋆ F9−2n, are defined as:

⋆ F5 = F5, F7 = dC6, F9 = dC8 (C.7)

and the fluxes have the following equations of motion:

d ⋆ F1 = 0, d ⋆ F3 = 0 . (C.8)

For Klebanov-Witten with massless flavours we should set Ξ6 = 0 and then the equation

of motion of the dilaton and Einstein’s equations can be shown to be satisfied also as

in [18, 19].
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C.1 Analysis of the generated background

In this work we generated a flavoured type-IIA solution which supports an SU(2)-structure

and non closed B. The action of (massive) type IIA in string frame, is now modified,

S = SMassive IIA + SDBI + SWZ (C.9)

As shown around equation (B.14), an SU(2)-structure can in general support smeared

source D4, D6 and D8 branes that extend in the Minkowski directions. The combined DBI

and WZ actions of this system are given by:

SDBI = SD8
DBI + SD6

DBI + SD4
DBI

SD4
DBI =

∫

M10

e−Φ̂

(
eΦ

h
vol4

)
∧ w1 ∧ Ξ5,

SD6
DBI = −

∫

M10

e−Φ̂

(
eΦ

h
vol4

)
∧
(
v1 ∧ j2 − w1 ∧B

)
∧ Ξ3,

SD8
DBI = −

∫

M10

e−Φ̂

(
eΦ

h
vol4

)
∧
(
1

2
w1 ∧ j2 ∧ j2 + v1 ∧ j2 ∧B − 1

2
w1 ∧B ∧B

)
∧ Ξ1 ,

(C.10)

and

SWZ = SD8
WZ + SD6

WZ + SD4
WZ ,

SD4
WZ = −

∫

M10

C5 ∧ Ξ5,

SD6
WZ =

∫

M10

(
C7 −B ∧ C5

)
∧ Ξ3,

SD8
WZ = −

∫

M10

(
C9 −B ∧ C7 +

1

2
B ∧B ∧ C5

)
∧ Ξ1.

(C.11)

In the presence of such sources we should define the RR-potentials as:

F0, F2 = dC1 + F0B, F4 = dC3 +B ∧ dC1 +
F0

2
B ∧B; (C.12)

this ensures that we have no ill-defined potential terms appearing explicitly. We note

that source D8 branes imply that F0 will no longer be quantised. In general the Bianchi

identities are given by

dF0 = Ξ1, dF2 − F0H = Ξ3 +B ∧ Ξ1;

dF4 −H ∧ F2 = Ξ5 +B ∧ Ξ3 +
1

2
B ∧B ∧ Ξ1.

(C.13)

The dual fluxes, related by the expression F2n = (−)n ⋆ F10−2n, are defined as:

F6 = dC5, F8 = dC7 −H ∧ C5,

F10 = dC9 −H ∧ C7.
(C.14)
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Here, we did not write the terms that are zero due to the SU(2) SUSY conditions in six

dimensions. The flux equations of motion for the RR sector are given by:

d ⋆ F2 +H ∧ ⋆F4 = 0, d ⋆ F4 +H ∧ F4 = 0, (C.15)

while for the NS sector we find:

d
(
e−2Φ̂ ⋆ H

)
=F0 ⋆ F2 + F2 ∧ ⋆F4 +

1

2
F4 ∧ F4−

eΦ−Φ̂

h

[
vol4 ∧ (w1 ∧B − v1 ∧ j2) ∧ Ξ1 + vol4 ∧ w1 ∧ Ξ3

]
.

(C.16)

A careful calculation shows that the potentials do not enter into this equation explicitly [26].

We can express the variation of the dilaton as an integral for compactness,

SDBI = −
∫

8e−2Φ̂(d ⋆ dΦ̂ + ⋆
R

4
− dΦ̂ ∧ ⋆dΦ̂− 1

8
H ∧ ⋆H) . (C.17)

It is useful at this stage to introduce the following notation,

ω(p)yλ(p) =
1

p!
ωµ1...µpλµ1...µp (C.18)

where the following identity is helpful,

∫
ω(p) ∧ λ(10−p) = −

∫ √−gλy(⋆ω). (C.19)

Then Einstein’s equations can be expressed in a gauge-invariant fashion as:

Rµν =− 2DµDνΦ̂ +
1

4
H2
µν + e2Φ̂

[
1

2
(F 2

2 )µν +
1

12
(F 2

4 )µν −
1

4
gµν(F

2
0 +

1

2
F 2
2 +

1

4!
F 2
4 )

]
+

eΦ+Φ̂

h

[
1

48
(Ξ5 + Ξ3 ∧B +

1

2
B ∧B ∧ Ξ1)µα1...α4

⋆ (vol4 ∧ w1)
α1...α4

ν −

1

4
(Ξ3 +B ∧ Ξ1)µα1α2

⋆ (vol4 ∧ v1 ∧ j2)α1α2

ν − 1

4
Ξ1 µ ⋆ (vol4 ∧ w1 ∧ j2 ∧ j2)ν

− 1

4
gµν

(
(Ξ5 + Ξ3 ∧B +

1

2
B ∧B ∧ Ξ1)y ⋆ (vol4 ∧ w1)−

(Ξ3 +B ∧ Ξ1)y ⋆ (vol4 ∧ v1 ∧ j2)−
1

2
Ξ1y ⋆ (vol4 ∧ w1 ∧ j2 ∧ j2)

)]
.

(C.20)

The equations (C.13)–(C.20) are solved by the system in section 5 after the BPS equa-

tions (5.10) are imposed.
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[8] G. Itsios, C. Núñez, K. Sfetsos and D.C. Thompson, Non-Abelian T-duality and the

AdS/CFT correspondence:new N = 1 backgrounds, Nucl. Phys. B 873 (2013) 1

[arXiv:1301.6755] [INSPIRE].

[9] I. Bah, C. Beem, N. Bobev and B. Wecht, Four-Dimensional SCFTs from M5-Branes,

JHEP 06 (2012) 005 [arXiv:1203.0303] [INSPIRE].

[10] M. Graña, R. Minasian, M. Petrini and A. Tomasiello, Supersymmetric backgrounds from

generalized Calabi-Yau manifolds, JHEP 08 (2004) 046 [hep-th/0406137] [INSPIRE].

[11] M. Graña, R. Minasian, M. Petrini and A. Tomasiello, Generalized structures of N = 1

vacua, JHEP 11 (2005) 020 [hep-th/0505212] [INSPIRE].

[12] A. Strominger, S.-T. Yau and E. Zaslow, Mirror symmetry is T duality,

Nucl. Phys. B 479 (1996) 243 [hep-th/9606040] [INSPIRE].

[13] S. Gurrieri, J. Louis, A. Micu and D. Waldram, Mirror symmetry in generalized Calabi-Yau

compactifications, Nucl. Phys. B 654 (2003) 61 [hep-th/0211102] [INSPIRE].

[14] S. Fidanza, R. Minasian and A. Tomasiello, Mirror symmetric SU(3) structure manifolds

with NS fluxes, Commun. Math. Phys. 254 (2005) 401 [hep-th/0311122] [INSPIRE].

[15] M. Graña, J. Louis and D. Waldram, SU(3)× SU(3) compactification and mirror duals of

magnetic fluxes, JHEP 04 (2007) 101 [hep-th/0612237] [INSPIRE].

[16] M. Graña, R. Minasian, M. Petrini and D. Waldram, T-duality, Generalized Geometry and

Non-Geometric Backgrounds, JHEP 04 (2009) 075 [arXiv:0807.4527] [INSPIRE].

[17] J. Erdmenger, N. Evans, I. Kirsch and E. Threlfall, Mesons in Gauge/Gravity Duals - A

Review, Eur. Phys. J. A 35 (2008) 81 [arXiv:0711.4467] [INSPIRE].
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