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Unconventional diffusion of light in strongly localized open absorbing media
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Very recent experiments have discovered that localized light in strongly absorbing media displays intriguing
diffusive phenomena. Here we develop a first-principles theory of light propagation in open media with arbitrary
absorption strength and sample length. We show analytically that waves in localized open absorbing media
exhibit highly unconventional diffusion. Specifically, wave energy transport follows the diffusion equation with
the diffusion coefficient exhibiting spatial resolution. Most strikingly, despite that the system is controlled by two
parameters—the ratio of the localization (absorption) length to the sample length—the spatially resolved diffusion
coefficient displays novel single parameter scaling: It depends on the position in the sample via the returning
probability. Our analytic predictions for this diffusion coefficient are confirmed by numerical simulations. In the
strong absorption limit they agree well with the experimental results.
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In spite of microscopic complexity, classical electromag-
netic waves (light) in infinite random media exhibit simple
and universal behaviors on macroscopic scales. For example,
the average intensity obeys a diffusion equation governed by
the diffusion coefficient. The latter includes renormalization
effects due to interference. When it vanishes light localization
occurs.1,2 Yet, real experiments or devices usually deal with
open media3–5 that have many profound differences from infi-
nite media. For example, in open media wave transport cannot
be fully suppressed, even disorders are strong. Can localized
waves thereby exhibit a simple and universal diffusive behavior
on macroscopic scales? This is a long-standing fundamental
issue in localization physics (see Ref. 6 for a recent review).
It is also of practical importance for considerable experiments
especially on classical waves.3,4,7 For example, although it is
possible to experimentally measure the distribution of intensity
profile, to present and analyze it is difficult because the
intensity profile depends on both the observation point and
external sources. Instead, the (arithmetic) average of intensity
profile can be easily obtained in experiments and be used
to probe the important new physics appearing only in the
localized regime such as resonant transmission.5,8

Previous studies of electron conductance9,10 show that,
in the localized regime, the geometrical average of the
conductance exhibits a single-parameter scaling behavior but
the arithmetic average does not, because the conductance
distribution is very broad. Similarly, the average intensity
is not a proper scaling variable in the localized regime.
One might thereby expect that it would not exhibit any
simple and universal behaviors on macroscopic scales. Such
conjecture was also enforced by microwave experiments on
a large ensemble of 10,000 disordered samples.4 There, the
prevailing, albeit phenomenological, macroscopic diffusion
model developed in Ref. 11 was found to completely fail to
describe long-time transport of localized waves due to the
fact that it cannot capture rare, long-lived, resonant trans-
mission states.8 In fact, it is precisely due to the nonscaling
nature of average intensity that has made the theoretical

study of wave transport in localized open media notoriously
difficult.

Surprisingly, an analytical result,12 found by using a first-
principles theory6,13 and fully confirmed by numerical simula-
tions, unveils a highly unconventional diffusive phenomenon
in localized nonabsorbing open media.6,12 That is, the diffusion
coefficient exhibits a novel scaling behavior, i.e., it depends
on position in the sample via the returning probability. As
a result of the novel scaling, the diffusion coefficient near
boundaries is dominated by typical localized states while
near the sample center by rare resonant transmission states.5

These analytical results allow us to calculate the average
intensity profile as well as the average transmission via the
spatially resolved diffusion coefficient. They show explicitly
how rare resonant transmission states dominate the average
transmission in strongly localized regime.

In this work, we show that the strong interplay between
absorption and localization leads to even more interesting
macroscopic diffusive phenomena. Strikingly, although the
system is controlled by two parameters, namely the ratio of
the localization (absorption) length to the sample length, the
diffusion coefficient also exhibits a novel single parameter
scaling. The analytical result for the diffusion coefficient
is confirmed by numerical experiments. Compared to the
nonabsorbing case, it is enhanced due to the suppression of
localization effects by absorption, and the relative increase
near the sample center is larger than near boundaries. For weak
absorption, the spatial resolution of the diffusion coefficient
overall is similar to that in the nonabsorbing case; for strong
absorption, it exhibits a plateau deep inside the sample, in
agreement with experimental results.7

Main results and experimental relevance. Specifically, we
consider propagation of light in quasi-one-dimensional open
(uniformly) absorbing media of length L. This system is
controlled by two dimensionless parameters, ξ/L and ξa/L,
where ξ (ξa) is the localization (absorption) length. We find
that—even in localized samples (ξ/L � 1)—waves exhibit
macroscopic diffusion irrespective of the absorption rate γ .
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TABLE I. Behavior of D(x) at ξ � ξa � L

Region D(x)/D(0)

x � ξa/2 e−ξa/(2ξ )

√
ξaξ � x � ξa/2 ex2/(ξaξ )e−x/ξ

ξ � x � √
ξaξ e−x/ξ

x � ξ 1 + c1(x/ξ ) + c2(x/ξ )2 + · · ·

More precisely, in the presence of a steady monochromatic
light source located at x ′ the (average) intensity (namely energy
density) profile, Y(x,x ′), obeys

[γ − ∂xD(x)∂x]Y(x,x ′) = δ(x − x ′). (1)

It resembles the normal diffusion equation, but, the diffusion
coefficient exhibits a number of anomalies. First of all, it has
a spatial resolution, D(x). This implies a local Fick’s law.
More precisely, the energy flux is given by −D(x)∂xI (x),
with I (x) the wave density profile. Notice that D(x) is an
intrinsic quantity independent of the source and the wave
density profile. It decreases monotonically from the boundary
to the sample midpoint and varying over several orders.
Most strikingly, despite that the system is controlled by two
parameters, D(x) exhibits a novel single parameter scaling,

D(x)/D(0) = D∞[λ(x)], (2)

similar to the nonabsorbing medium case. Here, the scaling
factor λ(x) is proportional to the (static) returning probability
depending on x/L as well as ξ/L and ξa/L, and the scaling
function D∞(λ) is the same as that of nonabsorbing media.
[The explicit form of both λ(x) and D∞(λ) will be given
below.] Bearing these anomalies and the analogy to the normal
diffusion equation, Eq. (1) indicates highly unconventional
diffusion of waves in open absorbing media. Furthermore,
using Eq. (2), we can predict analytically the spatial resolution
of the diffusion coefficient, which is confirmed by numerical
experiments. We stress that our analytic results are very gen-
eral: They are valid for arbitrary sample length and absorption
strength and for both time-reversal (orthogonal symmetry) and
broken time-reversal (unitary symmetry) systems. In addition,
they are valid for both quasi- and strictly one-dimensional
systems. In the former case, Y results from the integration
over the cross section.

Recent experiments (both real and numerical)7,14,15 focus
only on short samples and strong absorption, where resonant
transmission states are unimportant. In this limiting case
our analytic results are simplified and fully agree with the
recent experimental findings there. Specifically, if absorption is
strong such that ξa/L � 1, we find that D(x) exhibits a plateau
in the region min(x,L − x) � ξa . Moreover, the plateau value
is determined by single parameter, ξa/ξ ,

D(L/2)/D(0) = D∞(ξa/2ξ ) (3)

(cf. the first line of Tables I and II). We stress that the plateau
as well as Eq. (3) exists only if ξa/L � 1.

Origin of novel scaling. Since near the boundary, wave
energy is easier to leak out of the medium (cf. dashed lines of
Fig. 1), the returning probability, Y0(x,x), is inhomogeneous
in space (i.e., depending on x). As such, wave interference
effects are inhomogeneous also. Near the boundary (deep

TABLE II. Behavior of D(x) at ξa � ξ � L

Region D(x)/D(0)

x � ξa/2 1 + c1(ξa/2ξ ) + c2(ξa/2ξ )2 + · · ·
x � ξa/2 1 + c1(x/ξ ) + c2(x/ξ )2 + · · ·

inside the sample) they are weak (strong). For diffusive
samples (ξ/L � 1 where ξ ∼ πνSD0

16 with ν the photon
density of states and S the cross-section area), Y0(x,x)
gives rise to an inhomogeneous (one-loop) weak localiza-
tion correction ∼O[Y0(x,x)/(πνS)] ∼O[λ(x)]. For localized
samples (ξ/L � 1), as waves penetrate deeply into the sample
optical paths easily return to its departure point causing more
complicated wave interference. For example, two optical paths
may take the same n (= 3 in Fig. 1) loops as their routes and
trace them with different orders. They thereby constructively
interfere with each other. This leads to a weak localization
correction ∼O[λn(x)]. Therefore, D(x) depends on x/L (as
well as ξ/L and ξa/L) via the factor λ(x), justifying Eq. (2).

Importantly, the optical paths in Fig. 1 may propagate in
the same direction—clockwise or counterclockwise—during
tracing each loop, suggesting that interference picture beyond
what leads to usual one-loop weak localization does not
necessarily require time-reversal symmetry. This is crucial
to localization physics of systems with unitary symmetry.
Therefore, the novel scaling is an intrinsic wave phenomenon
unrelated to time-reversal symmetry.

First-principles theory. The derivations are largely parallel
to those of nonabsorbing media.12,13 Therefore, we shall
outline the key steps below with an emphasis on the key
differences, and refer the readers to Ref. 6 for technical
details. We first introduce the microscopic formalism valid for
arbitrary dimensions. Consider the point-like source located at
r′ inside the medium with the spectral decomposition Jω(r′)
(ω being the wave angular frequency). The time-integrated
intensity—upon disorder averaging—is given by17 I (r) =∫

dω
ω2 ν(ω)|Jω(r′)|2Y(r,r′). Here the (static) spatial correlation

function Y(r,r′) = ω2

2πν
〈GA

ω2 (r,r′) GR
ω2 (r′,r)〉, with 〈· · ·〉 stand-

ing for the disorder average and the advanced (retarded) Green
function GA (GR) defined as

{∇2 + ω2[1 + ε(r) ± iε′′]}GR,A

ω2 (r,r′) = δ(r − r′), (4)

where the dielectric fluctuation, ε(r), is Gaussian, ε′′ > 0
causes uniform absorption, and the light velocity in the air
is set to unity.

CBA

FIG. 1. (Color online) Examples of wave interference between
two optical paths (red and blue) leading to the novel scaling behavior.
The paths trace the three loops with different orders (B→A→C for
the red and C→B→A for the blue). Notice that these loops may
not be complete (e.g., dashed parts of A and C) due to wave energy
leakage.
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Then, it is a standard procedure to cast the above spatial
correlation function in terms of the functional integral over a
supermatrix field Q(r),

Y(r,r′) = πν

128

∫
D[Q]str[A+Q(r)A−Q(r′)]e−F [Q]. (5)

Here, A± are some constant supermatrices and ‘str’ is
the supertrace.6,16 F [Q] = πν

8

∫
drstr [D0(∇Q)2 − 2γ�Q]

differs from the nonabsorbing action6 in the second term
accounting for the absorption. Notice that the (bare) diffusion
coefficient D0 ≡ D(0) and for ε′′ � 1 the absorption rate
γ = ωε′′.18 The supermatrix Q = T −1�T , where � is the
so-called metallic saddle point and T takes the value from the
coset space of UOSP (2,2|4)/UOSP (2|2) ⊗ UOSP (2|2) for
orthogonal symmetry and of U (1,1|2)/U (1|1) ⊗ U (1|1) for
unitary symmetry. It is very important that if the boundary
is transparent, the supermatrix field is fixed to be � at the
boundary. This reflects that on the boundary there is no wave
energy accumulation.6,12,13

The microscopic formalism is simplified in quasi one
dimension: Q is homogeneous in the transverse plane;
F [Q] reduces to πνS

8

∫ L

0 dxstr [D0(∂xQ)2 − 2γ�Q] and the
boundary condition to Q(x = 0) = Q(x = L) = �. As a
result, Y(r,r′) depend only on the longitudinal coordinate.
Integrating the cross section coordinates gives Y(x,x ′). To
explicitly calculate the latter, we follow the procedures of
Refs. 6 and 13. We find that Y(x,x ′) satisfies Eq. (1)
with the boundary condition: Y(x = 0,x ′) = Y(x = L,x ′) =
0. Furthermore, we find that the diffusion coefficient has
a spatial resolution D(x), and the latter is a functional of
the factor λ(x) = Y0(x,x ′ = x)/(πνS). This justifies Eq. (2).
Y0(x,x ′) satisfies: (γ − D0∂

2
x )Y0(x,x ′) = δ(x − x ′),Y0(x =

0,x ′) = Y0(x = L,x ′) = 0. Solving this equation we obtain

λ(x) = ξa

2ξ

cosh(L/ξa) − cosh[(L − 2x)/ξa]

sinh(L/ξa)
, (6)

where the diffusive absorption length ξa ≡ √
D0/γ .

For λ � 1, we find that the perturbative expansion of the
scaling function D∞(λ) is identical to that at γ = 0. This
implies that D∞(λ) is the same as the one at γ = 0. The latter
has been found analytically and fully confirmed by numerical
experiments,12 which has the following asymptotic form:

D∞(λ) ∼
{

1 + c1λ + c2λ
2 + · · · , λ � 1,

e−λ, λ � 1.
(7)

Notice that the coefficients ci depend on the system’s symme-
try. In particular, for orthogonal symmetry c1 < 0, while for
unitary symmetry c1 = 0, c2 < 0.

Evidence from numerical experiments. We perform numer-
ical simulations of the (microscopic) Helmholtz equation. To
this end we prepare a randomly layered medium. The relative
permittivity in each layer is a random number with a real part
uniformly distributed in the interval [0.3,1.7]. The imaginary
part, ε′′, is assumed to be a constant. The random medium
is embedded in the air background so that there exist no
internal reflections when ε′′ vanishes. We launch a plane
wave of frequency ω = 1.65a−1 into the system, where the
sample length L = 200a with a the layer thickness, and use
the standard transfer matrix method to calculate the intensity

FIG. 2. (Color online) In localized open absorbing media the
spatial resolution of the diffusion coefficient exhibits novel single-
parameter scaling. Analytic predictions for D(x) (solid lines) are in
good agreement with the simulation results (circles). From bottom to
top the absorption strength increases (see the text for the value of ε′′

as well as other parameters).

profile, Iβ(x), for each dielectric disorder configuration β.
For a given value of ε′′, we calculate the ensemble-average
intensity profile, I (x) ≡ 〈Iβ(x)〉, of 5 000 000 disorder con-
figurations. Then, by presuming Eq. (1), which gives D(x) =
[−γ

∫ L

x
I (x ′)dx ′ + D(0)∂x |x=LI (x)]/∂xI (x), we numerically

obtain D(x) from I (x).
The results of simulations are shown in Fig. 2 for ε′′ =

0,1 × 10−4, 5 × 10−4, 1 × 10−3, and 2 × 10−3 (from bottom
to top). First of all, in the nonabsorbing limit (ε′′ = 0,
the bottom curve) we recover the result of Ref. 12 for
deeply localized (indeed, in this limit L/ξ = 200a/22a ≈ 9
is large) samples. The effects of absorption become significant
when ξa/L ∼ O(1), i.e., ε′′ ≈ ξ/(L2ω) ≈ 3 × 10−4. Having
this estimation in mind, we may adjust the value of ε′′ to
systematically explore the effects of absorption. The results
are compared with the analytic predictions obtained from the
novel single parameter scaling theory namely Eqs. (2), (6), and
(7). As shown in Fig. 2, they are in good agreement. Now we
present analytic results of D(x) obtained from the developed
first-principles theory.

D(x) in deeply localized samples. It has been shown12

that for these samples (ξ/L � 1) resonant transmission states
play decisive roles in establishing the highly unconventional
macroscopic diffusion of localized waves when absorption is
absent. Due to long lifetime, these states are very sensitive to
absorption. For weak absorption, ξa/L � 1, Eq. (6) reduces to
λ(x) ≈ x(L−x)

Lξ
{1 − [ x(L−x)

3ξ 2
a

]}. The second line of Eq. (7) gives

D(x) ∼ e−λ(x) for λ(x) � 1. Thus, D(x) enhances from its
value in the nonabsorbing case, which is ∼e

− x(L−x)
Lξ 12, by a fac-

tor of ∼ exp{ 1
3 [ x(L−x)

ξa

√
Lξ

]2}. The latter increases monotonically
from the boundary to the sample midpoint. Such inhomoge-
neous enhancement reflects that resonant transmission states
are “killed” by absorption. Near the sample midpoint they have
the longest lifetime and are most easily to be “killed,” and this
accounts for the strongest enhancement at the midpoint.

For strong absorption, ξa/L � 1, Eq. (6) reduces to λ(x) =
ξa

2ξ
(1 − e−2x/ξa ) for x � ξa/2 while to λ(x) ≈ λ(L/2) ≈
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FIG. 3. (Color online) Effects of absorption on the average
transmission T (L), which is rescaled by that of nonabsorbing media
T0(L). Inset: the corresponding intensity profiles for L/ξ = 20. For
the solid curves, the value of ξa/ξ is 100, 70, 40, 20, and 10 from top
to bottom, while for the dashed curve ξa/ξ = ∞.

ξa/(2ξ ) for x � ξa/2. (We consider only x � L/2 because
of D(x) = D(L − x).) Then, similar to discussions above we
use Eq. (7) to find D(x), and the results are summarized in
Tables I and II. We see that D(x) exhibits a plateau around the
sample center. Strikingly, despite that the system is controlled
by two parameters, ξ/L and ξa/L, the plateau value depends
on single parameter, ξa/ξ . More precisely, Eqs. (2) and (6)
give Eq. (3). Moreover, from Eq. (7) we obtain the expression
of D(L/2) for ξa/2ξ � 1 (ξa/2ξ � 1), which is given by the
first line of Table I (II). The physical origin of the plateau can
be understood from the fact that waves can only propagate a
finite distance ∼ξa in an absorbing medium, and the waves
deep inside the medium cannot see the existence of open
boundaries and resonant transmission states do not play a role
here. (As such, deep inside the medium the boundary is not
“seen” and resonance states play no roles.) Therefore, one
might expect that the phenomenological model of Ref. 11 is
valid, as observed in numerical experiments.14 Indeed, the first
line of Table I was obtained a long time ago by using the field
theory of infinite absorbing media.1

The second and third lines in Table I indicate a new scale,√
ξaξ . For x � √

ξaξ , D(x) behaves essentially the same
as that of semi-infinite nonabsorbing media, as shown in
the third and fourth lines. The deviation starts at x ∼ √

ξaξ

and has a physical explanation as follows. Light incident on
the boundary effectively penetrates into the medium with a
depth ξa . As such, the Lyapunov exponent (inverse localization
length), γ̄ , fluctuates, following a distribution ∼e− ξa ξ

4 (γ̄−ξ−1)2
.9

Averaging e−γ̄ x with respect to this distribution, we recover
the result given in the second line.

We can numerically calculate Eq. (1) to find the intensity
profile, which allows us to study overall effects of absorption
on transport. For simplicity, we focus on the one-dimensional
case and place the source at x ′ = ξ . Representative results for
the intensity profile I (x) are shown in the inset of Fig. 3 (for
L/ξ = 20). Obviously, although the diffusivity, namely D(x),
increases with increasing absorption (decreasing ξa/ξ ), the
intensity profile is everywhere more and more suppressed.
I (x) thereby obtained gives the average transmission, i.e.,
T (L) = −D0∂xI (x)|x=L, and the results are shown in the main
panel of Fig. 3. Importantly, even for weak absorption (e.g.,
the ξa/ξ = 70 curve), T (L) behaves dramatically different
from the average transmission of nonabsorbing media, T0(L).
This can be attributed to the fact that the contributions of
resonant transmission states to T (L) are readily suppressed
by absorption. The above results are also valid in quasi one
dimensions. For ξa � ξ � L, upon substituting D(x) (the
first line of Table II) into Eq. (1) and solving the equation
analytically, we find T (L) ∼ exp(− L

ξa
− L

4ξ
), in agreement

with the result obtained from the random matrix theory.19

In summary, we present the first microscopic theory
showing that in localized open absorbing media, waves display
highly unconventional diffusion. First of all, the diffusion
coefficient is inhomogeneous in space; most strikingly, despite
that the system is controlled by two parameters (ξ/L and
ξa/L), it exhibits novel single-parameter scaling, namely
Eq. (2). The analytic predictions for D(x) are confirmed
by numerical simulations. We emphasize that our theory is
very general and, particularly, valid for arbitrary absorption
strength. In the limiting case of strong absorption realized
experimentally,7 our results agree well with experimental
measurements. It is very interesting to generalize the present
theory to the gained system20,21 in the future, and this may
have direct applications in random lasers.22
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