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Markov state models (MSMs) have become a popular approach for investigating the conformational
dynamics of proteins and other biomolecules. MSMs are typically built from numerous molecular dy-
namics simulations by dividing the sampled configurations into a large number of microstates based
on geometric criteria. The resulting microstate model can then be coarse-grained into a more under-
standable macrostate model by lumping together rapidly mixing microstates into larger, metastable
aggregates. However, finite sampling often results in the creation of many poorly sampled mi-
crostates. During coarse-graining, these states are mistakenly identified as being kinetically important
because transitions to/from them appear to be slow. In this paper, we propose a formalism based on
an algebraic principle for matrix approximation, i.e., the Nyström method, to deal with such poorly
sampled microstates. Our scheme builds a hierarchy of microstates from high to low populations and
progressively applies spectral clustering on sets of microstates within each level of the hierarchy.
It helps spectral clustering identify metastable aggregates with highly populated microstates rather
than being distracted by lowly populated states. We demonstrate the ability of this algorithm to dis-
cover the major metastable states on two model systems, the alanine dipeptide and trpzip2 peptide.
© 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4802007]

I. INTRODUCTION

Markov state models (MSMs) are a powerful approach
to model both the thermodynamics and kinetics of proteins
and other biomolecules.1, 2, 4–13 In a MSM, one decomposes
the conformational space of a molecule into metastable states
(i.e., long-lived states that correspond to basins in the free
energy landscape that ultimately determines a system’s struc-
ture and dynamics) and calculates a transition probability
matrix whose entries specify the probability of transitioning
between each pair of states in some time interval, called the
lag time of the model. Using the transition probability matrix,
one can then calculate the relaxation of an ensemble of
proteins upon the temperature jump,14, 15 find the highest flux
paths between pairs of states,16–18 or perform numerous other
analyses.7, 19 In recent years, MSMs have been successfully
applied to study protein folding,18–23 RNA folding10, 24 and
protein-ligand binding.25–27

To build a MSM, one typically runs numerous molecu-
lar dynamics (MD) simulations. A geometric criterion (e.g.,
root mean square deviation (RMSD)) is then used to cluster
the sampled conformations into a large number of microstates
and the transition probabilities between pairs of states are

a)Authors to whom correspondence should be addressed. Electronic
addresses: yuany@math.pku.edu.cn and xuhuihuang@ust.hk

calculated from the number of transitions observed between
them.2, 3 One assumption is that conformations within each
microstate are structurally similar enough to ensure fast ki-
netic transitions between them. This normally requires a large
number of microstates (on the order of 10 000) even for small
proteins.28 Unfortunately, poor statistics resulting from finite
sampling can result in a significant number of microstates
where few transitions into/out of the state are observed, giv-
ing the false appearance that the microstate is separated from
others by a large free energy barrier. Moreover, while such
microstate models are often ideal for making a direct connec-
tion to experiments because of their structural and temporal
resolution, extracting human intuition from them is difficult
because of the large number of states.28

To facilitate human understanding, one typically lumps
kinetically related microstates together to form a smaller
number of macrostates. This coarse-graining is typically
achieved using spectral methods (e.g., Perron Cluster Cluster
Analysis (PCCA) algorithm6, 29). The basic idea behind spec-
tral methods is that metastability causes microstate transition
probability matrices to have nearly block diagonal structures.
As a result, the eigenvectors corresponding to the largest
(slowest) eigenvalues are nearly piecewise constant and can
be used to separate metastable states. Poorly sampled mi-
crostates will tend to appear in the top eigenvectors as nearly
constants and, as a result, the spectral methods will separate
them into their own macrostates. In the extreme case, poor
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statistics can even result in sparsely populated states that act
as sources or sinks because transitions both in and out of them
were not observed. Such sources and sinks may destroy a
model’s ability to predict long timescale dynamics. In order
to alleviate this problem, Noè et al.18 removed microstates
that were weakly connected to the rest, while Bowman et al.28

suggested subsampling the MD conformations to reduce the
impact of outliers. However, both approaches require ad hoc
choices on the part of the model builder.

A number of methods have now been proposed to deal
with these issues.30–33 For example, we previously presented
the super-level-set hierarchical clustering (SHC) algorithm,30

which was inspired by recent developments in topologi-
cal model construction. While this approach gave promis-
ing results,24 this approach relied on estimates of the den-
sities of different microstates, which are unreliable due to
the high dimensionality of biomolecule’s conformational
space.

Here, we present a hierarchical formalism based on the
Nyström extension, an algebraic principle in matrix approxi-
mation, to rigorously treat sparsely populated states with poor
statistics. We show that the removal of sparsely populated
microstates will lead to a stable approximation of the top
eigenvectors of the microstate transition probability matrix
that are associated with macrostates. Furthermore, we use the
Nyström method to obtain an efficient lumping of microstates
including those with poor statistics. To achieve this, we di-
vided the microstates into multilevel subsets from high to low
populations to capture the multiscale nature of biomolecule’s
free energy landscapes. We then apply spectral clustering
to each level set. Such a method allows us to identify the
dominant metastable conformational states with significant
populations. Finally, we demonstrate the power of this new
scheme on both the alanine-dipeptide and the trpzip2 peptide
system.

II. METHODS

A. Kinetic lumping with spectral methods

To construct a MSM that precisely describes the confor-
mational dynamics of a system, one typically needs to exploit
both geometric and kinetic information from MD simulations.
Geometric distances, often measured with the RMSD dis-
tance between configurations, can be used to identify confor-
mations that can likely interconvert quickly because of their
close geometric proximity. For example, k-medoids5, 18 or k-
centers2, 34 methods have been used to find kinetically relevant
clusterings of MD data. This geometric clustering is often fol-
lowed by kinetic lumping into macrostates, typically by spec-
tral clustering.6, 29 As discussed in the Introduction, a common
issue caused by direct application of spectral method is that
one captures many spurious macrostates consisting of a sin-
gle, poorly sampled microstate. In order to further elaborate
this issue, we first review the principles of kinetic lumping
with spectral methods.

Kinetic lumping aims to group together microstates that
can interconvert rapidly. In an extreme case where metastable
regions are separated by infinitely high free energy barriers,

transition probabilities between these metastable macrostates
will be zero. Therefore, the transition probability matrix P
(a row Markov matrix satisfying

∑
jPij = 1 with Pij ≥ 0)

contains uncoupled Markov chains. Let X be the config-
uration space, Y be the microstate space, and Z be the
macrostate space. If P is uncoupled with respect to the
macrostate partition {Z1, . . . , ZM}, P can be rewritten as a
block diagonal matrix after a permutation of the state indices
{Z1, . . . , ZM},

P =

⎡
⎢⎢⎣

P1 0 ... 0
0 P2 ... 0
0 ... 0
0 ... 0 PM

⎤
⎥⎥⎦ .

In this case, there are M (right) eigenvectors which are piece-
wise constants over Zi (i = 1, . . . , M) and associated with the
maximal eigenvalue, 1.

In biological macromolecules, metastable regions of the
free energy landscape are normally separated by barriers
greater than a kT (i.e., thermal fluctuations). In this case, we
can view the new transition matrix P̃ as nearly uncoupled
Markov chains, i.e., a perturbed transition matrix P̃ = P + E

where P is uncoupled and E is a matrix with small norm, de-
noted by ε = ‖E‖. For small enough ε, P̃ has M eigenvalues
λi = 1 − O(ε) (i = 1, . . . , M) whose eigenvectors are nearly
piecewise constants, vi(y) = ∑M

i=1 ci1Zi
(y) + O(ε). Nearly

uncoupled Markov chains are helpful to describe the con-
formational dynamics with a separation of timescales, where
dynamics within each block P̃k are fast compared to slower
dynamics between different blocks P̃kl .

The key idea in kinetic lumping is to study the lead-
ing right eigenvectors of the row Markov matrix P̃ = D−1K ,
where Ki, j is the number of transitions from microstate i to
j observed from simulations, and D = diag(di) where di is
the total number of transitions starting from microstate i. The
nearly piecewise constant structures of the right eigenvectors
of P̃ leads to the partition of metastable macrostates. In prac-
tice, the sign structures of the right eigenvectors are often used
for the lumping to construct MSMs.29

A major issue associated with this spectral method is that
it captures many spurious macrostates with low population
(small di). Since microstates must have small RMSD diam-
eters to ensure kinetic similarity within the state, a signif-
icant number of microstates will have low populations and
be nearly disconnected from the rest of the state space due
to insufficient sampling. These noisy states often appear as
being kinetically distinct in the top right eigenvectors of the
transition matrix. To remove such noise from the signal, reg-
ularization must be applied. Some heuristic approaches have
been adopted in the literature, like leaving-out certain rarely
visited states18 or subsampling the MD data.28 However, how
much data to discard remain an open question in such ad hoc
methods.

In Sec. II B, we will introduce the Nyström Method,
an algebraic principle for matrix approximation by sub-rows
(columns) that provides a mathematical foundation for the
heuristic methods described above and, moreover, points to
a new technique for coarse-graining MSMs.
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B. Nyström method

Let us define a transition count matrix K whose elements
(K(i, j)) denote the number of transitions observed from state
i to state j for all i, j ∈ Y. We will expect that the transition
probability matrix P̃ = D−1K with D = diag(di) where di

= ∑
jK(i, j), is a nearly uncoupled Markov matrix. Unfortu-

nately when there are not sufficient samples, there are often
spurious macrostates with low population which contribute to
the nearly uncoupled dynamics in P̃ . In the following we will
suggest a method based on the Nyström method to eliminate
these noisy states.

1. Application to symmetric matrix

Originally, the Nyström approximation was developed to
find an approximate eigen-decomposition of a symmetric ma-
trix based on its submatrices. We first illustrate this idea by
applying it to the transition count matrix, which is symmetric
due to the reversibility of molecular dynamics. Assume that a
symmetric and non-negative transition count matrix K is par-
titioned by

K =
[

A B

BT C

]
. (1)

Let A = U�UT be the eigen-decomposition of A, then we
can define the Nyström approximation of K to be

K̂ =
[

U

BT U�−1

]
�

[
UT �−1UT B

] =
[

A B

BT BT A−1B

]
.

(2)

Therefore ‖K − K̂‖ = ‖C − BT A−1B‖ ≈ 0 if the entries of
C and B are far smaller than those of A. In this case, Û T

= [UT ,�−1UT B] provides a good approximation of the
leading eigenvectors of K̂ and the original K. The sign struc-
ture of U decided by A will be stable compared to K.

2. Application to transition probability matrix

To construct MSMs, we need to deal with the non-
symmetric transition probability matrix P̃ . Our purpose is to
find the right eigenvectors u of P̃ , s.t. P̃ u = λu, which will be
used to find metastable states. Recall that P̃ = D−1K . There-
fore, P̃ u = D−1Ku = λu ⇔ D−1/2KD−1/2v = λv where
v = D1/2u. So, to find the eigenvectors of P̃ , it suffices
to find the eigenvectors v of the symmetric matrix Kn

= D−1/2KD−1/2, through which the right eigenvectors of P̃ can
be obtained by u = D−1/2v. To find a robust coarse-graining
into metastable states, the Nyström method can be extended
to treat Kn.

Consider Kn partitioned in the following way:

Kn = D−1/2KD−1/2 =
[

DA 0
0 DB

]−1/2

·
[

A B

BT C

]

·
[

DA 0
0 DB

]−1/2

, (3)

where D = diag(di) = diag(DA, DB), and di = ∑
jKij.

Define D̂A = diag(
∑

j Aij ) and eigen-decomposition

D̂
−1/2
A AD̂

−1/2
A = V �V T . Then D̂−1

A AU = U� where U

= D̂
−1/2
A V and UT D̂AU = I . Define D̂B = diag(

∑
j Bij ).

Nyström extension for Kn is

K̂n =
[

V

D̂
−1/2
B BT D̂

−1/2
A V �−1

]
�

[
V T �−1V T D̂

−1/2
A BD̂

−1/2
B

]

=
[

An Bn

BT
n BT

n A−1
n Bn

]
,

where An = D̂
−1/2
A AD̂

−1/2
A , Bn = D̂

−1/2
A BD̂

−1/2
B . If we con-

centrate on the major submatrix A, An has eigendecom-
position An = V �V T , and thus U = D̂

−1/2
A V is the right

eigenvector of PA = D̂−1
A A. The Nyström method, there-

fore, approximates the right eigenvectors of P̃ = D−1K as
[UT , (D̂−1

B BT U�−1)T ]T .
It is clear that in the Nyström method, K̂n approximates

Kn well if C, B � A, whence DA ≈ D̂A, DB ≈ D̂B , and
D

−1/2
B CD

−1/2
B − BT

n A−1
n Bn ≈ 0. To ensure that the entries of

C and B are as small as possible compared to those of A, one
can either assign all the sparse (or rare) states to the block C
or randomly down-sample the conformations such that rare
states are not included in the block A. These two schemes
correspond to the heuristic treatments by Noè et al.18 and
Bowman et al.,28 respectively.

In this paper, we use the following greedy method to
construct the submatrix A deterministically. We first sort the
rows (columns) of K in decreasing order according to the row
(column) sum. We then choose A to be the m-by-m matrix
consisting of the m largest rows and columns. In practice,
one often observes that the distribution of microstate popula-
tions is roughly a power law distribution, which implies B col-
lects exponentially many states/rows with exponentially small
populations.

3. Recovery of original Markov chains

In the Nyström approximation discussed above, the
eigenvectors of the submatrix A have the same sign struc-
tures as the right eigenvectors of the transition probability
matrix if the entries of A are sufficiently large compared to
those of B and C. However, in order to recover the original
Markov chains using Nyström method, a few other condi-
tions need to be satisfied. Let us consider that the original
transition probability matrix P̃ = D−1K can be partitioned
into M macrostates: M = {Z1, . . . , ZM}. If P̃ is an uncou-
pled Markov chain with M piecewise constant eigenvectors
associated with eigenvalue 1, the partition M can be ex-
actly recovered under the following three conditions. First,
at least one microstate in any macrostate Zi has to appear
in the submatrix A, otherwise there is no possibility to re-
construct it. Second, any macrostate Zi must not break into
disconnected parts in A. This condition ensures that down-
sampling in the Nyström approximation does not incorrectly
break one macrostate into multiple pieces. Finally, every rare
microstate with indices in B should be directly connected to
one or more large microstates with indices in A. With these
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conditions, one can recover such macrostates by the Nyström
method, merely from submatrices A and B, via the following
steps:

1. Find eigen-decomposition of An = D̂
−1/2
A AD̂

−1/2
A

= V �V T ;
2. Construct U = D̂

−1/2
A V , find piecewise constant vectors

in column vectors of U and the partition {Ẑ1, . . . , ẐM}
associated with them;

3. Assign each rare state k to the partition it has
the maximal transition probability to, maxi P̃kẐi

= maxi

∑
j∈Zi

P̃kj .

These conditions can be summarized precisely in Theo-
rem A (see the Appendix).

However, in molecular dynamics simulations of biologi-
cal macromolecules, we normally deal with nearly uncoupled
Markov chains determined by the underlying metastable re-
gions of the free energy landscape. In this case, we can intro-
duce a small perturbation on the uncoupled Markov chain dis-
cussed above: A = A0 + E with the block-diagonal A0 for the
uncoupled Markov chain. The partition P̃ = {Z1, . . . , ZM}
can be recovered using Nyström method if the following three
conditions can be satisfied. The first condition is identical
with the uncoupled Markov chain case and requires that some
microstates of Zi are selected from A. In the second condition,
any two microstates in Zi can always be connected directly or
through other microstates in A regardless of the magnitude of
the perturbation ε = ‖E‖. In other words, Zi does not break
into disconnected parts in A with small enough perturbation ε.
The last condition requires that every microstate in B should
be always directly connected to one or more microstates in A
regardless of the size of ε. In practice, a sufficiently long lag
time may be used to obtain the transition probability matrix
in order to satisfy this condition, which can be implemented
by applying step 3 above to transition probabilities with long
enough lag time. These conditions can be summarized in The-
orem B (see the Appendix).

The challenge for applying the Nyström method is the
lack of prior knowledge of how best to split the transition ma-
trix into submatrices A and B. Moreover, due to the multi-
scale nature of free energy landscapes,24 this split will largely
depend on the scale of the model, i.e., how coarsely we de-
compose the conformation space. Therefore, we pursue a hi-
erarchical Nyström approximation by ranking all the rows
(columns) by their sums (or populations) and dividing the ma-
trix K into multilevel blocks.

C. Multilevel analysis on free energy landscapes

The free energy landscapes of biomolecules are rugged,
having a large number of local minima separated by barri-
ers with various height. Therefore, the metastable macrostates
have a multiscale nature depending on the energy barriers
and equivalently the intrinsic timescales. Such a multiscale
landscape can be accurately represented by a cluster tree
(Figure 1).24

Given a free energy landscape, construction of such clus-
ter trees can be performed as follows. (a) Divide the confor-

FIG. 1. Schematic figure for the multilevel analysis of a free energy land-
scape. (a) a 1D free energy landscape divided into four levels; (b) a clus-
ter tree representing this free energy landscape. At level one, two nodes are
formed that correspond to the two deepest free energy minima. At level two,
four nodes are identified for four free energy minima. At level three and
four, the number of nodes are reduced since some free energy minima are
connected.

mation space into overlapping level sets according to free en-
ergy, so that each level contains all previous levels with lower
free energy. (b) For each level, apply spectral clustering to
the largest connected component. (c) A cluster tree is gener-
ated by connecting nodes lying in adjacent levels that have
nonempty intersection.

An example is given in Figure 1. In the coarsest level, two
metastable states (corresponding to the two nodes belonging
to level 1 in Figure 1) are desired with a large implied time
scale for transitioning between them. In a less coarse model,
the system may exhibit four metastable states (corresponding
to the four nodes belonging to level 2 in Figure 1), and two
of them are crossed with relatively faster speed. To capture
metastable states, one has to keep in mind such a multiscale
nature.

The challenge in conformation dynamics lies in that
we do not know the underlying free-energy landscape. Even
though the free energy will decide the sample distribution
in conformation space, it is impossible to reach an accurate
estimation of densities in such a high dimensional space.
Therefore, it is impossible to pursue an accurate multi-
level analysis of such free energy landscapes. Fortunately,
the Nyström method leads us to a reasonable multilevel
approximation scheme.

Microstates with high populations are visited frequently
and, therefore, tend to be highly correlated with metastable
states or free energy basins. On the other hand, microstates
with low population are only visited rarely, suggesting they
lie on energy barrier. Therefore, we may apply the Nyström
method progressively from highly populated states to rarely
visited states, which leads to a natural way to explore free
energy landscapes according to their multiscale nature. The
following algorithm works efficiently in the application ex-
amples shown in Sec. III.

Unlike the case of a cluster tree built from a known free-
energy landscape, the hierarchical Nyström method for nearly
uncoupled Markov chains generally constructs a graph in-
stead of a tree. Note that in this algorithm, the most impor-
tant free parameter is how to divide the microstates into level
sets, i.e., the choice of the pj. In this study, we have applied

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

202.40.139.165 On: Tue, 25 Mar 2014 07:32:04



174106-5 Yao et al. J. Chem. Phys. 138, 174106 (2013)

ALGORITHM I. Hierarchical Nyström Extension Graph (HNEG).

(1) Sort microstates by their population in decreasing order, and divide all microstates into m level sets: top p1, p2, . . . , pm populated states, where p1 ≤ p2

≤ . . . ≤ pm;
(2) On each level, perform spectral clustering only with microstates (�j) that reside in the top pj (1 ≤ j ≤ m) population: i.e., �j = {States 1 through nj, where∑nj

i=1 pi ≤ pj }
(3) Draw a Hierarchical Nyström Extension Graph:

A. Node set: for each level, each cluster/group is represented by a node;
B. Edge set: an edge is added if the associated two nodes are in adjacent levels with nonempty intersections;
C. Gradient flow arrows: for each edge, an arrow is added pointing from high to low level;

(4) Lumping:
A. Set each attraction node (with zero out-degree) as metastable states;
B. Expand those metastable states to its associated attraction basins (the intermediate nodes which flow down to single attraction nodes along gradient flows);
C. Assign microstates on barrier nodes (those branching nodes which flow down to more than one attraction nodes) to the attraction basin with maximal

transition probability.

the Bayes factor approach introduced by Bacallado et al.35

to select the optimal level set. A Bayes factor (B(L1, L2)
= P(L1|D)/P(L2|D)) is the ratio of posterior probabilities for
two lumpings (L1 and L2) given finite sampling and a com-
mon set of microstates (D). We first generate a large num-
ber of models by systematically varying the level sets, and
then select the optimal level set as that can produce the model
with the highest posterior probability. The second important
free parameter is how to choose the number of clusters dur-
ing spectral clustering within each level set. In this work, the
number of clusters will be chosen based on the maximal spec-
tral gap in top eigenvalues as in PCCA.6, 29

D. Simulation details

Alanine Dipeptide. The alanine dipeptide dataset is
taken from Chodera et al.5 It consists of 975 20-ps NVE sim-
ulations with conformations stored every 0.1 ps, for a total of
195 k conformations. Please refer to Ref. 5 for additional de-
tails on the simulations. We split the conformations into 5000
microstates using a k-centers clustering algorithm.2 The dis-
tance between a pair of conformations is determined by their
backbone RMSD.

Trpzip2. The trpzip2 simulation dataset is taken from
Zhuang et al.14 It contains 830 50-ns MD simulations with
conformations saved every 100 ps. This results in a total
of 415 k conformations. Please refer to Ref. 14 for addi-
tional details on the simulations. We have performed k-centers
clustering2 to divide the conformations into 2000 clusters
based on the heavy atom RMSD.

III. RESULTS

A. Alanine-dipeptide

To validate the algorithm developed here, we first apply it
to a simple alanine dipeptide system. For alanine dipeptide, it
is easy to obtain equilibrium sampling and an accurate repre-
sentation of the free energy landscape by projecting it onto a
pair of torsion angles: φ and ψ (see Fig. 2(a)). Therefore, we
can visualize the resulting states and check their various prop-
erties on this projection of the free energy landscape. Such
projection is displayed in Fig. 2(b), and the free energy is cal-

culated by W = −kT ln(Pi/P0), where Pi is the number of
conformations that lie in bin i divided by the total of number
conformations, and P0 is a constant. We discretize the torsion
plane by dividing it into square bins of 10◦× 10◦. As shown in
Fig. 2(b), there are six minima or metastable states centered at
around: (−140◦, 160◦), (−60◦,140◦), (−140◦, 160◦), (−60◦,
−50◦), (50◦, −100◦), and (40◦, 60◦).

In order to generate the HNEG to describe the confor-
mational dynamics of the alanine dipeptide, we first applied
the k-centers clustering algorithm to divide the conforma-
tions into 5000 microstates. Clusters generated from the k-
centers clustering algorithm have an approximately uniform
distance to their cluster centers, and thus result in a strong cor-
relation between the cluster population and its density.2, 24, 34

We then followed the procedure introduced in Sec. II C to
construct the hierarchical directed graph using the Nyström
Expansion method. One example of a HNEG is shown in
Fig. 2(c). This graph is generated using the level set [0.1,
0.2, 0.3, . . . , 0.8, 0.9], and arrows are used to connect inter-
secting nodes in the adjacent levels as gradient flows. There
are six attraction nodes (labeled from 1 to 6) each lying in
to a different free energy basin as shown in Fig. 2(c). Attrac-
tion nodes 1 and 2 appear in the first level (top 10% popu-
lation), indicating the deepest free energy basins. While at-
traction nodes 5 and 6 belong to the last level and correspond
to the shallowest free energy basins. These results are consis-
tent with projection of the free energy landscape shown in
Fig. 2(b). Therefore, the HNEG is able to provide a hier-
archical representation of the free energy landscape. More-
over, starting from the 6 attraction nodes, we can further
lump all the microstates into six metastable states following
Algorithm I in Sec. II C.

To compare the performance of our lumping algorithm
with the popular PCCA method, here we apply the Bayes
factor approach.35 As discussed in Sec. II C, the Bayes
factor compares the posterior probabilities of two lump-
ings constructed from a common microstate set, and the
larger the Bayes factor is, the more comparative advantage
the first lumping has. For example, ln B = 50 implies that
P(L1|D)/P(L2|D) = e50 ≈ 5.18 × 1021, whence lumping L1

is much better than L2. Since MSMs generated by our algo-
rithm is not unique and depend on the construction of level
sets, we have generated a number of different MSMs using
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FIG. 2. An illustration of Hierarchical Nyström Extension Graph (HNEG) applied to the alanine dipeptide system. (a) A conformation of the alanine dipeptide
with two torsion angels (φ and ψ) labeled. (b) The free energy landscape projected onto the φ − ψ plane, where the red color indicates regions of high density
or low free energy. (c) A Hierarchical Nyström Extension Graph containing 9 levels constructed for this system.

a systematic variation of the level sets to compare with the
PCCA method.

The level sets are mainly determined by two factors: the
population cut-off (i.e., microstates to be included in the sub-
matrix A in the Nyström method) and the number of levels.
We also noticed that the largest microstate has a population
of 6%, so we select the 1st level to be at 10% to ensure a suf-
ficient number of states in each level. Specifically, we have
selected 9 different population cut-offs (pm): 20%, 30%, . . . ,
90%, and 99% and 10 different numbers of levels (from 6 to
15). For example, the combination of 90% cut-off and 9 lev-
els will generate a level set of [0.1, 0.2, 0.3, . . . , 0.8, 0.9].
Altogether, we have obtained 90 different level sets for MSM
construction.

The Bayes factor test shows that the models generated by
our algorithm have a consistently higher posterior probability
(ln B > 100) than those obtained from the PCCA method (see
Fig. 3). Moreover, the models with six metastable states have
the highest Bayes factors, indicating that a 6-state model is an
optimal choice, which is consistent with the earlier study.5

B. Trpzip2

In this section, we have further applied our algorithm on
a larger system: a 12-residue β-hairpin trpzip2 peptide. Its
folding has been extensively studies by both experimental and
computational techniques.5, 14, 15, 36–39 In particular, a few re-
cent studies have constructed MSMs from MD simulations to
identify the metastable states during its folding process.5, 14

The Bayes comparison results clearly demonstrate the
advantage of our algorithm over the PCCA method. As with
the alanine dipeptide system, we have generated a num-
ber of different lumpings by varying the level sets of the
2000 microstates generated by k-centers clustering. Specifi-
cally, we select 13 different population cut-offs (p1 = 40%,
pm = 41%, 45%, 50%, 55%, . . . , 90%, 95%, 99%) and 20 dif-
ferent numbers of levels (m = 11, . . . ,30), resulting in a total

FIG. 3. Bayesian comparison of MSMs constructed by the Hierarchical
Nyström Extension Graph (HNEG) and the PCCA method for the alanine
dipeptide. The y axis displays the logarithm of the posterior probability
(ln (P(L1|D))) for models generated by HNEG (red) and PCCA (black). The
logarithmic Bayes factor ln B = ln (P(L1|D))HNEG − ln (P(L2|D)PCCA) � 100,
indicating that HNEG consistently provides a better lumping than PCCA. The
lag time is 9 ps.
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FIG. 4. Bayesian comparison of MSMs constructed by the Hierarchical
Nyström Extension Graph (HNEG) and the PCCA method for the trpzip2
peptide. The y axis displays the logarithm of the posterior probability
(ln (P(L1|D))) for models generated by HNEG (red) and PCCA (black).
The logarithmic Bayes factor ln B = ln (P(L1|D))HNEG − ln (P(L2|D)PCCA)
∈ [250, 500], indicating that HNEG consistently provides a better lumping
than PCCA for the trpzip2 system. The lag time is 10 ns.

of 260 different models. As shown in Fig. 4, all 260 mod-
els have substantially higher posterior probabilities than those
obtained from the PCCA method. Furthermore, models with
13 metastable macrostates have the highest posterior proba-
bilities, which are consistent with our previous study.14 There-
fore, we select the model with the highest posterior probabil-
ity as the optimal lumping.

In Fig. 5, we have displayed the representative structures
from each of the macrostates of the optimal lumping together
with its equilibrium population obtained from the MSM. The
macrostate 3 has the highest population (around 38%) and
corresponds to a folded hairpin structure, indicating that the
trpzip2 peptide still contains a large fraction of the hairpin
component at 350 K.

FIG. 5. Representative structures of the 13 macrostates from the optimal
lumping (with the highest posterior probability) for the trpzip2 system. Their
equilibrium populations are also displayed. Macrostate 3 corresponds to a
folded hairpin structure and has the largest population (38.5%), indicating
that the trpzip2 peptide still has a significant fraction of the folded structure
at 350 K.

Our results also show that the new algorithm efficiently
captures highly populated metastable regions of the transition
probability matrix, while the PCCA method first separates
rarely visited sparse states. To visualize this, we have com-
pared the nearly diagonal block structures of the transition
probability matrices of a representative lumping obtained by
our algorithm and PCCA (see Fig. 6(a)). These results show
that PCCA has the tendency to first separate sparsely popu-
lated states as metastable states (6 out of 11 states have pop-
ulations <2%), while our algorithm efficiently identifies the
highly populated metastable regions. Among the 260 models
generated by our algorithm, the number of large states (>2%)
converges to 9 with a total of less than 20 metastable states
(see Fig. 6(b)). However, PCCA needs models with nearly 80
states in order to identify the same number of large metastable
states.

Our results also demonstrate that the identification of the
major metastable states using the Nyström method is robust
to leaving out different fraction of rarely visited microstates.
After including >50% of the most populated microstates, our
algorithm consistently identifies the same number of large
macrostates (with population >1%, 2%, or 3%) (see Fig. 7).
In order to further check whether our algorithm can consis-
tently identify large macrostates containing similar conforma-
tions in addition to the same populations, we have performed
pairwise mutual information calculations between the optimal
lumping and all other lumpings. For a pair of two lumpings (f
and g), the mutual information is defined as

I (f, g) =
∑
i,j

P (f (x) = i, g(x) = j )

× log
P (f (x) = i, g(x) = j )

P (f (x) = i)PX(g(x) = j )
, (4)

where P(f(x) = i) is the probability for microstate x belonging
to macrostate i in the lumping f, and P(f(x) = i, g(x) = j) is the
joint probability for microstate x belonging to both macrostate
i in the lumping f and macrostate j in the lumping g.

In Fig. 8, we have plotted the histogram of pairwise
mutual information between the optimal lumping (with 13
macrostates) and all other lumpings generated by our algo-
rithm (259 of them). All these lumpings from our method
have an average mutual information of 2.104. This value is
close to its theoretical upper limit (the entropy of the optimal
lumping, 3.313), and well above that of the model produced
by the PCCA method (with 13 macrostates and the mutual
information of 0.785). For better comparison, we have also
shown that the mutual information between random lumpings
and the optimal lumping is only around 0.0513. These results
clearly demonstrate that models generated by our Nyström
method with different level sets consistently have a larger
similarity with the optimal lumping compared to the PCCA
method.

In order to further illustrate that different lumpings gen-
erated from our method contain a common set of large
macrostates that share similar protein conformations or mi-
crostates, we have plotted the joint probability P(f(x) = i,
g(x) = j) between the optimal lumping and a representative
lumping (see Eq. (4) for the detailed definition). We chose the
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FIG. 6. (a) An illustration of block diagonal structures of the microstate transition probability matrices. There are 2000 microstates in total, and the matrices
are permuted to group microstates that belong to the same macrostate together. The results show that PCCA (left panel) tends to separate nearly disconnected
small blocks first, while HNEG (right panel) focuses on identifying the well populated macrostates. The number of macrostates for both lumpings is 11. (b)
HNEG successfully identify the large macrostates (around 9) with a much smaller total number of macrostates (<20) compared to PCCA (>80).

FIG. 7. The Hierarchical Nyström method can robustly identify the large
metastable macrostates with population greater than 1% (red), 2% (green),
and 3% (blue), when varying the fraction of data that are included in the
submatrix A (see Sec. II for details). The percentage of data we include(Pm) in
the submatrix A is varied from 41% to 99%. The number of large macrostates
keeps the same after we include 50% of the data or more.

FIG. 8. Histogram of pairwise mutual information (with a mean value of
2.104) between the optimal lumping and all other lumpings (259 of them) ob-
tained from the Nyström method by varying the level sets (red). For compari-
son, the mutual information between a lumping generated by PCCA (with 13
macrostates) and the optimal lumping is only 0.785 (green). The entropy of
the optimal lumping (upper limit of the mutual information) is 3.313 (black),
while the averaged mutual information between random lumpings (we pro-
duced 259 random lumpings) and the optimal lumping is 0.051.
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FIG. 9. Illustration of the overlapping of microstates (or protein conforma-
tions) assigned to large macrostates in different lumpings. The optimal lump-
ing (A) is compared with a representative lumping (B) with mutual informa-
tion at around 2.1. Both of these lumpings contain 9 large macrostates states
with population >2%. The joint probability matrix PA, B(i, j) indicates the
overlapping of microstates assigned to macrostate i in the optimal lumping
A and macrostate j in the representative lumping B. PA, B has large diagonal
elements but small off-diagonal elements after permutation. These results in-
dicate that the large macrostates in the two lumpings share a relatively large
fraction of identical microstates.

representative lumping to have a mutual information close to
the mean value of all the lumpings generated by our algo-
rithm. Both the optimal lumping and the representative lump-
ing contain 9 large macrostates (with population >2%). The
joint probability matrix is thus a 9 × 9 matrix (see Fig. 9),
and each matrix element represents the overlapping of the mi-
crostates in a pair of macrostates each belonging to a different
lumping. After a permutation, it is clear that large macrostates
in two compared lumpings contain a large fraction of identi-
cal microstates (with large diagonal matrix elements but small
off-diagonal elements).

IV. CONCLUSION AND DISCUSSION

We have developed an algorithm based on the Nyström
method and its multilevel extensions to construct MSMs from
molecular dynamics simulation trajectories. Our algorithm is
shown to be efficient in eliminating noise due to insufficient
sampling by focusing on the dominant submatrix of the tran-
sition probability matrix. Therefore, the HNEG method can
greatly improve over other popular kinetic clustering algo-
rithms, such as PCCA, which tends to identify sparse states
that are very weakly coupled to the rest of phase space before
identifying real metastable states in denser regions of phase
space. We have demonstrated that HNEG can generate a num-
ber of MSMs at different resolutions.

In practice, HNEG has a similar protocol to SHC which
was developed by the authors as a prototype before.24 SHC
relies on the rough estimation of the conformation density us-
ing the populations of microstates from k-centers clustering.
However, estimating densities in high dimensional spaces is
challenging, and the k-centers algorithm only generates clus-
ters with approximately equal radii, so small variances in the

cluster radius may induce large volume differences. On the
other hand, the algebraic framework based on the Nyström
method does not rely on density estimation and leads to effi-
cient algorithms to pursue metastable macrostates with a mul-
tiscale analysis.

Our algorithm has been automated and is available at
SimTK (http://www.simtk.org/home/hneg).
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APPENDIX: THEORY OF RECOVERING ORIGINAL
MARKOV CHAINS

Theorem A (Exact Recovery). Let di =
∑

jKij be the de-
gree of microstate i, and P = D−1K be an uncoupled Markov
matrix with respect to partition P = {Z1, . . . , ZM}. Given θ

> 0, denote by Iθ = {i : di ≥ θ} the microstates selected for
submatrix A in Nyström method. Then Nyström method will
exactly recover those Zk, if and only if the following holds:

1. Zk ∩ Iθ �= ∅;
2. Any two microstates in Zk will be connected by a path in

Iθ ;
3. For any microstate of Zk outside Iθ , it is directly con-

nected to a microstate of Zk in Iθ .

Proof of Theorem A. Since P = D−1K is an uncou-
pled Markov matrix, the submatrix A is block-diagonal. The
first condition and the second condition ensures that the mi-
crostates of Zk which are selected in A are within the same
block, whence there is a right eigenvector of D̂−1

A A, Uk

= 1Zk∩Iθ
as the indicator function of Zk ∩ Iθ . Now consider

the Nyström approximation

ũk =
(

Uk

D−1
B BT Uk

)
=

(
1Zk∩Iθ

D−1
B BT 1Zk∩Iθ

)
.

The jth row in D−1
B BT 1Zk∩Iθ

summarizes the probability that
microstate j which is outside Iθ , to be connected in Zk ∩ Iθ .
If j �∈ Zk, by uncoupled Markov matrix assumption, such a
probability is 0; If j ∈ Zk, such a probability could be 1 or
0 depending on whether j is directly connected to Zk ∩ Iθ ,
whence by the third condition, the probability must be 1 in
this case. In summary, ũk is an indicator function on 1Zk

on
all microstates, whence Zk is exactly recovered.

Theorem B (Asymptotic Recovery under Noise). Let
P̃ = D−1K = P0 + E (ε = ‖E‖) be a nearly uncoupled
Markov matrix with respect to partition M = {Z1, . . . , ZM}.
Given θ > 0, let Iθ = {i : di ≥ θ}. Then Nyström method with
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submatrix selected from Iθ rows and columns will recover Zk

as ε → 0, if and only if the following holds:

1. Zk ∩ Iθ �= ∅.
2. Any two microstates in Zk will be connected by a “high-

way” in Iθ , in the sense that for any i, j ∈ Zk ∩ Iθ ,
there is a path (i = k0, k1, . . . , kt = j) in Iθ such that
limε→0 Kkt−1,kt

≥ γ > 0 for some constant γ ;
3. Any microstate of Zk outside Iθ is directly connected to

some microstates of Zk “strongly” in Iθ , in the sense that
for any i ∈ Zk (k = 1, . . . , M), there is j ∈ Zk ∩ Iθ such
that limε → 0Ki, j ≥ γ > 0 for some constant γ .

Proof of Theorem B. The proof of this theorem fol-
lows the same reasoning above. Notice that when P̃ = D−1K

= P0 + E (ε = ‖E‖) be a nearly uncoupled Markov ma-
trix with respect to partition M = {Z1, . . . , ZM}, one has Uk

= 1Zk∩Iθ
+ O(ε) and D−1

B BT Ukλ
−1
k = D−1

B BT 1Zk
+ O(ε).

So in the limit ε → 0, the three conditions recover the three
conditions in noise-free case.

1R. Zwanzig, J. Stat. Phys. 30, 255 (1983).
2G. R. Bowman, X. Huang, and V. S. Pande, Methods 49, 197 (2009).
3K. Beauchamp, G. R. Bowman, T. J. Lane, L. Maibaum, I. S. Haque, and
V. S. Pande, J. Chem. Theory Comput. 7, 3412 (2011).

4N. V. Buchete and G. Hummer, J. Phys. Chem. B 112, 6057 (2008).
5J. D. Chodera, N. Singhal, V. S. Pande, K. A. Dill, and W. C. Swope, J.
Chem. Phys. 126, 155101 (2007).

6P. Deuflhard and M. Weber, Linear Algebra Appl. 398, 161 (2005).
7F. Noè and S. Fischer, Curr. Opin. Struct. Biol. 18, 154 (2008).
8W. Zheng, M. Andrec, E. Gallicchio, and R. M. Levy, Proc. Natl. Acad.
Sci. U.S.A. 104, 15340 (2007).

9A. Vitalis and A. Caflisch, J. Chem. Theory Comput. 8, 1108 (2012).
10X. Huang, G. R. Bowman, S. Bacallado, and V. S. Pande, Proc. Natl. Acad.

Sci. U.S.A. 106, 19765 (2009).
11B. Keller, P. Hünenberger, and W. F. van Gunsteren, J. Chem. Theory Com-

put. 7, 1032 (2011).
12A. C. Pan and B. Roux, J. Chem. Phys. 129, 064107 (2008).
13C. Schüette, F. Noé, J. Lu, M. Sarich, and E. Vanden-Eijnden, J. Chem.

Phys. 134, 204105 (2011).
14W. Zhuang, R. Z. Cui, D.-A. Silva, and X. Huang, J. Phys. Chem. B 115,

5415 (2011).

15R. Z. Cui, D.-A. Silva, J. Song, G. Bowman, W. Zhuang, and X. Huang,
Curr. Phys. Chem. 2, 45 (2012).

16W. E and E. Vanden-Eijnden, J. Stat. Phys. 123, 503 (2006).
17P. Metzner, C. Schütte, and E. Vanden-Eijnden, Multiscale Model. Simul.

7, 1192 (2009).
18F. Noè, C. Schütte, E. Vanden-Eijnden, L. Reich, and T. R. Weikl, Proc.

Natl. Acad. Sci. U.S.A. 106, 19011 (2009).
19G. R. Bowman, V. A. Voelz, and V. S. Pande, Curr. Opin. Struct. Biol. 21,

4 (2011).
20V. A. Voelz, G. R. Bowman, K. Beauchamp, and V. S. Pande, J. Am. Chem.

Soc. 132, 1526 (2010).
21K. Beauchamp, R. McGibbon, Y. Lin, and V. S. Pande, Proc. Natl. Acad.

Sci. U.S.A. 109, 17807 (2012).
22G. R. Bowman, V. A. Voelz, and V. S. Pande, J. Am. Chem. Soc. 133, 664

(2011).
23F. Morcos, S. Chatterjee, C. McClendon, P. R. Brenner, R. López-Rendón,

J. Zintsmaster, M. Ercsey-Ravasz, C. Sweet, M. Jacobson, J. Peng, and J.
Izaguirre, PLOS Comput. Biol. 6, e1001015 (2010).

24X. Huang, Y. Yao, G. R. Bowman, J. Sun, L. J. Guibas, G. Carlsson, and
V. S. Pande, Pac. Symp. Biocomput. 2010, 228–239 (2010).

25I. Buch, T. Giorgino, and G. De Fabritiis, Proc. Natl. Acad. Sci. U.S.A. 108,
10184 (2011).

26D.-A. Silva, G. R. Bowman, A. Sosa-Peinado, and X. Huang, PLOS Com-
put. Biol. 7, e1002054 (2011).

27M. Held, P. Metzner, J.-H. Prinz, and F. Noè, Biophys. J. 100, 701
(2011).

28G. R. Bowman, K. A. Beauchamp, G. Boxer, and V. S. Pande, J. Chem.
Phys. 131, 124101 (2009).

29P. Deuflhard, W. Huisinga, A. Fischer, and C. Schütte, Linear Algebra Appl.
315, 39 (1998).

30Y. Yao, J. Sun, X. Huang, G. Bowman, G. Singh, M. Lesnick, V. Pande,
L. J. Guibas, and G. Carlsson, J. Chem. Phys. 130, 144115 (2009).

31G. R. Bowman, J. Chem. Phys. 137, 134111 (2012).
32A. Jain and G. Stock, “Identifying metastable states of folding proteins,”

J. Chem. Theory Comput. 8(10), 3810–3819 (2012).
33E. K. Rains and H. C. Andersen, J. Chem. Phys. 133, 144113 (2010).
34Y. Zhao, F. K. Sheong, J. Sun, P. Sander, and X. Huang, J. Comput. Chem.

34, 95 (2013).
35S. Bacallado, J. D. Chodera, and V. Pande, J. Chem. Phys. 131, 045106

(2009).
36A. G. Cochran, N. J. Skelton, and M. A. Starovasnik, Proc. Natl. Acad. Sci.

U.S.A. 98, 5578 (2001).
37A. W. Smith, J. Lessing, Z. Ganim, C. S. Peng, A. Tokmakoff, S. Roy,

T. L. C. Jansen, and J. Knoester, J. Phys. Chem. B 114, 10913 (2010).
38W. Y. Yang and M. Gruebele, J. Am. Chem. Soc. 126, 7758 (2004).
39T. Wang, Y. Xu, D. Du, and F. Gai, Biopolymers 75, 163 (2004).

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

202.40.139.165 On: Tue, 25 Mar 2014 07:32:04

http://dx.doi.org/10.1007/BF01012300
http://dx.doi.org/10.1016/j.ymeth.2009.04.013
http://dx.doi.org/10.1021/ct200463m
http://dx.doi.org/10.1021/jp0761665
http://dx.doi.org/10.1063/1.2714538
http://dx.doi.org/10.1063/1.2714538
http://dx.doi.org/10.1016/j.laa.2004.10.026
http://dx.doi.org/10.1016/j.sbi.2008.01.008
http://dx.doi.org/10.1073/pnas.0704418104
http://dx.doi.org/10.1073/pnas.0704418104
http://dx.doi.org/10.1021/ct200801b
http://dx.doi.org/10.1073/pnas.0909088106
http://dx.doi.org/10.1073/pnas.0909088106
http://dx.doi.org/10.1021/ct200069c
http://dx.doi.org/10.1021/ct200069c
http://dx.doi.org/10.1063/1.2959573
http://dx.doi.org/10.1063/1.3590108
http://dx.doi.org/10.1063/1.3590108
http://dx.doi.org/10.1021/jp109592b
http://dx.doi.org/10.2174/1877946811202010045
http://dx.doi.org/10.1007/s10955-005-9003-9
http://dx.doi.org/10.1137/070699500
http://dx.doi.org/10.1073/pnas.0905466106
http://dx.doi.org/10.1073/pnas.0905466106
http://dx.doi.org/10.1016/j.sbi.2010.10.006
http://dx.doi.org/10.1021/ja9090353
http://dx.doi.org/10.1021/ja9090353
http://dx.doi.org/10.1073/pnas.1201810109
http://dx.doi.org/10.1073/pnas.1201810109
http://dx.doi.org/10.1021/ja106936n
http://dx.doi.org/10.1371/journal.pcbi.1001015
http://dx.doi.org/10.1073/pnas.1103547108
http://dx.doi.org/10.1371/journal.pcbi.1002054
http://dx.doi.org/10.1371/journal.pcbi.1002054
http://dx.doi.org/10.1016/j.bpj.2010.12.3699
http://dx.doi.org/10.1063/1.3216567
http://dx.doi.org/10.1063/1.3216567
http://dx.doi.org/10.1016/S0024-3795(00)00095-1
http://dx.doi.org/10.1063/1.3103496
http://dx.doi.org/10.1063/1.4755751
http://dx.doi.org/10.1021/ct300077q
http://dx.doi.org/10.1063/1.3496438
http://dx.doi.org/10.1002/jcc.23110
http://dx.doi.org/10.1063/1.3192309
http://dx.doi.org/10.1073/pnas.091100898
http://dx.doi.org/10.1073/pnas.091100898
http://dx.doi.org/10.1021/jp104017h
http://dx.doi.org/10.1021/ja0493751
http://dx.doi.org/10.1002/bip.20101

